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Section 1: Introduction 

Executive Summary 
The research carried out by the Section on Functional Imaging Methods (SFIM) is aimed to deepen 

and broaden the understanding and utility of fMRI and MRI.  For over 17 years that the Unit-then-Section 
on Functional Imaging Methods (SFIM) has existed, our primary goal has been to extract as much usable 
neuronal and physiologic information as possible from the fMRI and MRI signal. More recently, we have 
been actively working to translate this understanding into methodology that directly impacts basic research 
and clinical practice. Most of our 37 papers published since the last report reflect these directions. The 
strength of SFIM is that our work spans the interface of contrast mechanism research, methodology 
development, and clinical and basic neuroscience applications of fMRI. We believe that the best innovations 
are driven by the needs of specific applications and that the best and most innovative applications are those 
that use the latest and best methodology. Our research and the expertise of members of SFIM strike this 
balance between contrast mechanism, methodology, and applications research. 

Our research can be categorized into three themes. The first is “Fluctuations and Connectivity in 
fMRI.” The second is “Pushing the limits of Hemodynamic Stability, Sensitivity, and Specificity.” The third 
is “Novel Contrast and Interventions.”  

Theme 1: After about a decade of quiescence since the inception of resting state fMRI (rsfMRI) in 
1995[1], the field has been growing rapidly. Temporal correlations in spontaneous fluctuations across brain 
regions are commonly interpreted as an indicator of functional connectivity (FC). While these patterns of 
connectivity follow known functional architecture, they vary with population, individual subject, task, and 
mental state - and are constantly changing across time scales from seconds to days. The resting state signal 
clearly contains meaningful information yet we don’t fully understand its information content, neural 
underpinnings, variability, or even its functional purpose. The field is currently in an explosive growth phase 
as many groups, including SFIM are working to better understand this signal and to develop better methods 
to extract, quantify, and compare it. Our work in Theme 1 has aimed to improve brain state classification 
methods in individuals, to track ongoing cognition and attention, and generally to better understand how 
rsfMRI varies. Ultimately, a major clinical goal is to use this signal on an individual basis in order to help 
diagnose, treat, and predict outcome of individuals in a clinical setting.  

Theme 2: A central theme in SFIM over the years has continued to be understanding and expanding 
the limits of what the activation-induced hemodynamic response can provide in terms of neuronal and 
physiologic information. We have been working to increase temporal stability as well as to push back the 
limits of functional spatial and temporal resolution. We have followed up on our past work on massive 
averaging and model free analysis with a study at higher field strength that involved modulation of cognitive 
load. We have continued our work developing multi-echo EPI approaches for increased time series stability. 
With the arrival of a new post doc, Laurentius Huber, we are very excited to have begun very high 
resolution mapping of layer dependent fMRI activation and connectivity in sensory and motor cortex - 
towards the goal of using fMRI to infer feedback vs feedforward connections from layer-specific activity.  

Theme 3: The focus of this last theme is our continued effort to explore beyond “standard” fMRI or 
MRI with novel pulse sequences, interventions, or contrasts. In the past decade we have sought, for 
example, to develop neuronal current imaging[2] to characterize anatomic changes with chronic 
interventions[3], and to test novel methods to calibrate the fMRI signal such as with the Valsalva 
maneuver[4] or using ongoing resting state fluctuations[5]. We have continued this exploration, innovation, 

�2



and development along these lines with research to characterize and understand anatomic changes with 
exercise[6], fast T1 changes with a task, and blood volume changes with the Valsalva maneuver.  

During the past four years SFIM has produced a body of novel work that includes not only further 
development and testing of methods that we have previously introduced but also high risk, high gain work 
that is forging new directions. An example of the former is our substantial body of work establishing the 
advantages and limits of multi-echo EPI. Examples of the latter are our resting state layer dependent fMRI 
mapping and our correlation-based task decoding methodology development. In the last BSC report, we 
emphasized the need to move to individual subject classification. Individual classification involves either 
categorizing a subject as belonging to a specific population or deriving usable information on the 
individual’s functional organization or ongoing brain activity during a scan session. All of the studies in this 
report are individual subject studies.  

This report is organized as follows: The themes are numbered 1 through 3. Within each theme, there 
are three sub headings: A is a brief introduction; B is the progress report which describes projects that have 
been completed and published after December of 2012 - called Past Studies; and C describes ongoing 
projects that have only been published in abstract form - called Current Studies. We do not discuss projects 
that are only in the conceptual stage. At the end of each project description, the section members and 
collaborators are listed in parentheses in alphabetical order, with the primary investigator in bold print. 
Collaborators outside of SFIM are in red.  

Significance, Innovation, and Appropriateness to the Intramural Environment 
The field of fMRI is over a quarter century old and by all measures, it has been advancing at an 

accelerating rate in the past 5 to 10 years. This accelerated advancement is largely due to the improvement 
in our understanding of - and confidence in - the fMRI signal as well as rapid growth in the sophistication in 
methodology. Methods, understanding, and advanced applications drive the field. The research of SFIM is 
focused directly on these areas. The cutting edge innovations come from close collaborations of more 
technically focused researchers and those focused on applications. The NIH intramural program has a 
critical mass of both neuroimaging methods and applications researchers. Extramural funding for methods 
development has been relatively sparse, with a few notable exceptions, including the Human Connectome 
Project and the BRAIN Initiative. While these investments are starting to pay off substantially, re-energizing 
the field of fMRI and brain mapping in general, the intramural environment has offered the right balance of 
stability as a rich environment for technically savvy collaborators who are able to “beta-test” for some of the 
latest innovations coming from SFIM as well as the Functional MRI Core Facility.  

Our most significant papers over the years have helped to pioneer new processing methodologies 
and a deeper understanding of the hemodynamic response. These papers have introduced advances that 
include: simultaneous perfusion and BOLD imaging[7], multivariate pattern effect analysis[8], ongoing 
brain state (or task) decoding based on connectivity[9], spatial heterogeneity of resting state dynamics[10], 
respiration contribution to resting state fluctuations[5], periodic interaction of resting state networks[11], 
high resolution layer dependent resting state and activation mapping, entire brain activation mapping with 
massive averaging[12], the rationale for not performing global regression[13], optimal event related 
timing[14], motion-decoupled fMRI removing task correlated movement[15], BOLD temporal 
nonlinearities[16], pushing temporal resolution by task modulation and hemodynamic response 
characterization[17], direct neuronal current imaging in cell cultures[2], and of course, perhaps our most 
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successful method to penetrate the field: multi-echo EPI for time series cleanup[18, 19] and automated 
segmentation based on multi-echo EPI data. 

Currently, a central goal - perhaps the primary goal - of the field is the application of fMRI to 
individual subjects. Since the very beginning of fMRI, we have been able to see activation-related signal 
changes from individuals but lacked the sensitivity and processing sophistication to classify individuals 
based on their spatial and temporal patterns of resting state or task-related activity. One could see the visual 
cortex or motor cortex light up but could not, for example, derive information about the subject’s 
intelligence, musical talent, or likelihood for that subject to suffer from schizophrenia later in life. Recently, 
because of a combination of massive databases with corresponding genetic and behavioral data, better 
characterization of cross subject variability, improved methods for cleaning up the fMRI signal, and, 
importantly, better machine learning approaches tailored to neuroimaging data, the field is starting to make 
more rapid progress in uncovering subtle yet usable fMRI-based biomarkers for characterizing individual 
subjects. This quest will define the next decade of fMRI method development, and the work of our group is 
well positioned, along with our fMRI Core Facility with our new Data Sharing and Machine Learning 
Teams, to make fundamental scientific and methodological contributions along these avenues.  

Section 2: Research Themes 
  
Theme 1: Fluctuations and Connectivity in fMRI 

1A. Introduction: Connectivity Information  
The subfield of resting state fMRI-based connectivity mapping is rapidly evolving. Resting state 

fMRI has proven to be a high-fidelity and highly reproducible method to discern differences in groups, 
individuals, and brain regions. The resting state signal is also proving to be a rich source of research as we 
are just beginning to understand its dynamics and variability as well as its neural and behavioral correlates.   
We are at just the beginning of merging advanced acquisition methods, pre- and post-processing methods, 
and carefully crafted neuroscience and clinical paradigms to fully exploit this information-rich signal. The 
research of SFIM has devoted considerable resources to the study of resting state connectivity and, 
specifically, dynamic resting state connectivity.   

In one study, we applied sliding window pairwise connectivity analysis to successfully differentiate 
and track four different ongoing tasks [9]. This was the first of its kind to decode ongoing function from 
measures of connectivity rather than magnitude. From this initial study, several new questions arose. The 
informative connectivity changes appeared from regions that were more extensive than known areas of 
magnitude changes - potentially revealing informative signal changes that are typically missed when 
assessing magnitude changes alone. This observation also has dovetailed with our previous finding using 
massive averaging and a model free exploration of activation - also revealing nearly all the gray matter 
activated in some manner even during a simple task[12]. We followed this initial finding with a study 
involving attention shifts in the scanner and found that dynamic magnitude changes and connectivity 
changes carried different information related to whether the subject was internally or externally distracted. 

One fundamentally important issue related to our approach was a question related to the initial 
segmentation of the brain to determine the time series on which to perform sliding window pairwise 
correlation analysis. We found that if dimensionality reduction (i.e. principle component analysis (PCA)) 
was performed following time series extraction from each segment and before sliding window pairwise 
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correlation analysis, the initial segmentation scheme was not a significant determinant of the effectiveness 
of the decoding of ongoing task - thus allowing arbitrary segmentation as a first step. This new finding frees 
up a degree of latitude in comparing resting state connectivity across individuals as precise registration and 
segmentation may not be a critical step.  

Ongoing research from SFIM in this theme includes addressing the question of how to move back 
and forth between a signal that was optimized for “decoding” or classification of a task and the spatial 
origins of this signal. To bring fMRI decoding to full use, a clear transformation between decoding 
information and spatial mapping is critical. We are also collaborating with Dr. Eric Wong from UCSD to 
develop and implement a pulse sequence that collects extremely sparse data that approximately matches the 
spatial resolution of a typically segmented brain for dynamic connectivity analysis (150 to 500 segments)
[20]. Collecting this data as a first step saves considerable time and substantially boosts signal to noise. 
Lastly, we have begun to work to more precisely characterize power-spectra differences between known 
functional networks as this information may help characterize individuals and give insight into the 
functional correlates of resting state fluctuations.  

1B. Past Studies 

1B-1. Connectivity-based brain reading. 
Functional connectivity (FC) patterns in fMRI exhibit dynamic behavior on the scale of seconds[10] 

with rich spatiotemporal structure and limited number of whole-brain, quasi-stable FC configurations  or 
states recurring across time and subjects. Although several groups have hypothesized that these FC states 
relate to on-going cognition, and that their quantification may have clinical relevance, evidence of a direct 
relationship between FC states and on-going cognition has been missing. To fill this gap, we conducted 
experiments in which we scanned 
subjects continuously for 25 minutes 
as they performed and transitioned 
between 4 different mental states 
dictated by tasks (i.e., math, 2-back, 
visual attention, and rest) in blocks of 
3 minutes. After appropriate pre-
processing we computed FC states for 
windows ranging from 22.5s to 180s 
in length. We then submitted these FC 
states to a clustering algorithm and 
evaluated whether or not FC states 
grouped according to mental states. 
For subjects that performed the tasks 
consistently, the algorithm was able to 
group FC states according to mental 
states almost perfectly for all window 
durations (Figure 1A). This was not 
the case for subjects with low and 
(Figure 1B). This first result suggests 
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Figure 1: A) Accuracy of state assessment vs window length. B) Correspondence of 
subject performance (x-axis) to assessment accuracy (y-axis). C) Accuracy as a 
function of ROI removal. Even with only 50% of the most discriminative ROI’s 
remaining, the accuracy was 90%.
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that short-term (<30sec) fluctuations in fMRI 
connectivity patterns can be reliably used to 
track ongoing cognition, on an individual 
subject basis, despite the noisy and indirect 
nature of BOLD signals as a marker of neuronal 
activity.  

We then conducted additional analyses 
to determine the spatial distribution of the most 
informative connections. For this, we sorted 
regions of interest (ROIs) according to how 
well they differentiated the tasks in terms of 
activation levels. We then tested FC states 
classification using progressively smaller sets of 
ROIs. In one analysis, we removed the most 
task-discriminative ROIs first. In a second 
analysis, we removed ROIs in the opposite 
order (least task-discriminative first) . 
Independent of window length or exclusion 
order, classification accuracy decreases 
monotonically as the number of discarded ROIs increases (Figure 1C). The rate of decrease in accuracy is 
faster when most discriminative ROIs are removed first, yet removal of a limited set of least discriminative 
ROIs can also degrade classification. This result, along with that shown in Figure 2 suggests that an FC state 
is better described by the state of wide spread connections across the brain, rather than by the considerably 
smaller set of connections between regions whose overall activity changes the most across the tasks under 
study. 

The strong correspondence between FC states and mental states reported here suggests that the 
detailed study of FC states may provide novel insights into system-level behaviors of the human brain. This 
work was reported in PNAS[9]. {P. A. Bandettini, L. C. Buchanan, J. Gonzalez-Castillo, D. A. Handwerker, C. W. Hoy, M. E. 
Robinson, Z. S. Saad} 

1B-2. Multi-echo EPI with cardiac gating 
Performing BOLD-fMRI studies that target regions such as the brainstem that are surrounded by 

large vascular structures is particularly difficult given their elevated levels of noise associated with pulsatile 
motion from normal cardiac function. Certainly enough averaging can reduce the effects of pulsatile motion 
but another way to minimize it is to acquire images always at the same point within the cardiac cycle (i.e. 
cardiac-gated imaging); therefore the subcortical units, which are quite small and can move in and out of a 
voxel with each cardiac cycle, will always remain in the same location.  

Irregular repetition times (TR’s) resulting from a variable heart rate produce artifactual baseline 
signal shifts due to T1 relaxation. Guimaraes et al. [21] previously proposed a model-driven approach to 
account for these artifactual baseline shifts - requiring keeping track of the TR’s for each run. Given the 
non-BOLD nature of the pulsation artifacts and movement that accompanies cardiac-gated acquisitions, we 
hypothesized that combining cardiac-gated acquisition strategies with multi-echo independent component 
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Figure 2: Changes in activation corresponding to each is shown in color. 
The task subtraction is inferred by the flanking boxes. Informative 
connections are shown in white. Note the more extensive connectivity 
changes that helped to perform the windowed decoding. 
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analysis (ME-ICA) based denoising[19] might constitute a 
powerful approach for the study of the brainstem with fMRI.  

To test this hypothesis we acquired cardiac-gated multi-echo 
fMRI data while 5 subjects performed an auditory task. An 
auditory task was chosen to activate the inferior colliculus (IC; 
which sits at the back of the brainstem). Five pre-processing 
strategies were evaluated: single-echo ignoring the T1 artifact(1E - 
in Figure 3A); single-echo combined with a model-driven T1-
baseline correction[21]; dual-echo ratio approach[22], optimal 
combination of three echoes [23] and ME-ICA[18].  

Figure 3B shows ME-ICA always found a noise component 
(Figure 3B) with high rho (non-BOLD index) and low kappa 
(BOLD-index) whose time-series heavily correlated with modeled 
T1-baseline shifts based on TR recordings (Figure 3B time series: 
red=T1-shift model, black=ICA time series), and whose spatial 
maps clearly delineate gray and white matter based on T1 
differences. The size of the points on the curve delineate the 
relative contribution to time series noise. As can be seen, the T1-
variation point dominates the noise.  

A comparison of activation maps produced using the imaging 
strategies is shown in 
Figure 4. While gating with 
T R m o d e l - b a s e d T 1 
correction does produce 
activation in IC (top right 
activation map in Figure 4) 
the more robust results are 
produced either using ME-
ICA without gating or with 
gating. No T1 correction is 

needed when gating as the T1 noise, manifest as an ICA component 
that is non-BOLD, is easily removed.  

This approach also suggests the potential of ME-ICA to 
identify and remove other T1 artifacts such as inflow effects in 
constant TR acquisitions, that are otherwise difficult to model and 
account for in a time series. 

One more advantage of this approach is that a spatially and 
temporally registered T1 map falls out as an “artifact” ICA component. This map can be useful for gray 
matter segmentation. Overall, while this approach is not essential for imaging function in small structures 
subject to movement with cardiac pulsation, it creates high quality maps much more easily and quickly than 
standard approaches. Another area that would benefit from this is the spinal cord due to high CSF pulsatility 
in this area. This study is currently in press in NeuroImage. {P. A. Bandettini, J. A. Derbyshire, L. C. Buchanan, C. 
Caballero-Gaudes, J. Gonzalez-Castillo, D. A. Handwerker, S. Inati, D. C. Jangraw, P. Panwar, Z. Valentinos, V. Roopchangsingh} 
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Figure 4. Comparison of activation in Inferior 
Colliculus. ME-ICA Denoised activation is most 
clear - and no model based T1 correction is 
necessary as the cardiac ICA component is 
removed automatically based on a low fit to the 
BOLD TE dependence curve.  
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Figure 3. A. Activated voxels in the brain stem 
region to an auditory stimulation vs time series 
imaging strategy. B. Non-BOLD intercept change 
(rho) vs. BOLD fit (kappa) shows the largest 
(larges magnitude) rejected effect is the T1 effect 
that maps out to the T1 weighted images at the 
bottom. The time courses show the close 
correspondence between the rejected ICA time 
course and a model based on the TR and a T1 
estimate. 
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1C. Current Studies 

1C-1. Classifying Distraction using Magnitude and Connectivity Changes 
We have started using the approach described in 1B-1 to develop an objective, continuous metric of 

sustained attention that is valid for a naturalistic task. In this study, we leverage recent work showing the 
predictive potential of functional connectivity (FC) in classifying cognitive state[9]. We extract features of 
interest from changes in both fMRI magnitude as well as FC, and we build a machine learning classifier that 
uses these features to identify the presence of, and attention to, the auditory distractions in the task. 

Eight healthy adults each read text for 4-6 runs, with 30 9-line pages of text per run. On each page, 
either white noise or unrelated speech was played through headphones. Before each session, subjects were 
instructed to ignore the speech and focus on the reading (“ignore speech trials”) or attend to both (“attend 
speech trials”). Multi-Echo fMRI data were acquired 
during each session, and gaze data were collected 
using an infrared tracker. After pre-processing the 
data and applying multi-echo ICA denoising [18], 
we extracted features that could be used to 
distinguish white noise from speech trials or attend 
speech from ignore speech trials. The mean time-
course in each ROI in a 200-ROI atlas[24] was 
extracted, and Support Vector Decomposition (SVD) 
was used for dimensionality reduction. The 
remaining component time-courses became the 
magnitude “Mag” features used in classification. 
The correlations between ROI components in a 20-s 
sliding window were calculated and passed through 
dimensionality reduction to find the “FC” features. 
The features were sampled once per page and 
normalized. Logistic regression classifiers were built 
to classify (1) white noise trials vs. speech trials and 
(2) focus vs. split trials. In each case, classifiers 
were trained using (1) only Mag features, and (2) 
only FC features. The area under the ROC curve (AUC) during leave-one-out cross-validation was used as a 
figure of merit.  

The results are shown in Figure 5. When classifying white noise vs. speech, Mag features were 
effective and FC features were not. When classifying ignore speech vs. attend speech trials, however, FC 
features greatly outperformed Mag features, reaching an unusually high mean AUC value of 0.94. To 
localize predictive features, we calculated forward models (FM), which can be interpreted as the coupling 
between the original data and the classifier output. The Mag FM’s illustrate that lower fMRI magnitude in 
temporal cortex provided evidence for white noise trials. The FC FM’s illustrate that evidence for ignore 
speech trials came from a different set of regions including temporal cortex and precuneus (increased FC) 
and the OFC and ventral striatum (decreased FC). Such FC patterns may provide an effective, objective 
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Figure 5: A)Use of magnitude features is superior for detection of 
stimulus characteristics. B) Use of connectivity features is superior for 
detection of internal distraction. C and D are the locations of the most 
informative features. 
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metric of sustained attention on a single-trial level in educational scenarios. This could pave the way for 
fMRI-based evaluations, interventions, or real-time feedback that could help readers – especially those with 
attention-related disorders – to better resist distraction and control attentional state. {P. A. Bandettini, J. Gonzalez-
Castillo, D. A. Handwerker, D. C. Jangraw, P. Panwar, V. Zachariou} 

1C-2. Brain state classification success is independent of segmentation approach. 
Recent work has illustrated the power of functional connectivity patterns to provide information 

about the task being performed[9]. This technique relies on a parcellation of the brain into ROIs, generally 
determined a priori from anatomical boundaries or resting state connectivity patterns. Once the time-course 
of activity in each ROI is determined, pairs are correlated using a sliding window approach. Finally, a 
dimensionality reduction step–typically singular value decomposition (SVD) – is performed to remove 
noise, thus aggregating connectivity patterns across the whole brain. In this study, we evaluate the ability of 
the dimensionality reduction step to extract informative patterns when the original parcellations are less 
rigidly determined, opening up the possibility of extracting these informative FC features in real time. 

A newly proposed imaging sequence may make it possible to record activity from predetermined 
ROIs directly[20], removing the need for voxel-wise pre-processing and averaging, which can be 
computationally expensive. This speedup could clear the way for rapid 
calculation of FC features, which have proven highly informative. 
This, in turn, could lead to real-time decoding and feedback based on 
these signals. If the exact regions in the parcellation are unimportant, 
we could parcel in-brain voxels randomly and count on recovering the 
informative patterns in the dimensionality reduction step. 

To test the plausibility of this approach, we constructed 
random (but still contiguous) parcellations of roughly equal size using 
an algorithm from Craddock et al. [24] and repeated the process of 
task clustering detailed by Gonzalez-Castillo et al.[9], using the same 
data. The results demonstrated that the clustering algorithm performs 
just as well with the random parcellations as it did with the 
connectivity-based atlas as shown in Figure 6. Future work will 
explore the impact of other changes that could simplify or streamline 
the proposed imaging sequence, such as overlapping or non-
contiguous ROIs. {P. A. Bandettini, J.Gonzalez-Castillo, D. C. Jangraw} 

1C-3. From Classification to Spatial Localization 
Recent work has demonstrated the powerful ability of FC patterns to identity individuals as 

belonging to a specific group or having a specific behavioral trait, however, these FC patterns also change 
with the subject’s task or attentional state in a highly reproducible way. In spite of the success of these 
classification studies, the spatial origins of the activity that produced these patterns are difficult to visualize 
and study, and are therefore largely unexplored. In this study, we seek ways to map informative FC patterns 
back onto the regions and time points that produced them, allowing a more thorough exploration of these 
highly informative signals. 
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Figure 6: The accuracy of the clustering 
algorithm was evaluated using the adjusted 
rand index (ARI), showing the ability of the 
algorithm to group time windows together that 
were in the same task. The output for each 
subject using the standard atlas is compared to 
10 parcellations. For all randomizations. the 
median subject had perfect groupings, with a 
small number of outliers.
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We used synthetic data to illustrate 
the feasibility of our approach, which we 
call “discriminative signal enhancement” 
shown in Figure 7. We generated activity 
for a set of 4 ROIs with distinct patterns of 
connectivity during 2 conditions of a block 
design task. Once a classifier was built to 
distinguish trials in the two blocks based on 
these FC patterns, we used the weights and 
connectivity patterns to find times when 
each ROI pair contr ibuted useful 
information to the classifier. At times when 
a pair’s connectivity was informative, we 
gave higher weights to both ROI’s in that 
pair. In the synthetic data, this method successfully highlighted the activity in informative regions at the 
times when their FC with another region was useful to the classifier. 

Future work will use data from existing SFIM paradigms that feature dynamic FC changes to 
leverage a classifier into a map of the original activity that informed it. This exploratory tool will help 
generate new hypotheses for a more detailed study of these important patterns. {P. A. Bandettini, J.Gonzalez-Castillo, 
D. C. Jangraw} 

1C-4. Magnitude vs. Connectivity Locations 
Prior work from SFIM has demonstrated that: (1) overly strict response models combined with 

limited TSNR result in incomplete maps of brain function[12]; and (2) that functional connectivity based 
task decoding improves when connectivity between areas not rendered as significantly active in traditional 
activity-based analyses are considered during the analyses[9]. It then follows that functional connectivity 
may provide higher sensitivity for detecting regions involved in a task—relative to traditional magnitude 
based analyses—given its multivariate nature and lack of assumptions regarding expected hemodynamic 
response shape. We are currently conducting new analyses to evaluate the potential benefits of connectivity-
based brain mapping relative to traditional magnitude-based approaches. In particular, preliminary work will 
focus on the empirical evaluation of the following set of working hypotheses:  

H1. If tasks reliably modulate activity in areas not commonly detected with traditional GLM-based 
approaches, BOLD task-based datasets should contain connections between regions of no a-priori 
relationship with the task whose connectivity strength remains reliably constant across repetitions of the 
task. 

H2. The spatial distribution and strength of such reliable connections should vary in a meaningful 
manner across different tasks. 

H3. Connectivity-based decoding accuracy should degrade when such reliable connections with no-
task fluctuations are discarded in a manner similar to how it happens when connections involving regions of 
primary relationship to the task are eliminated from the analysis. 

Analysis of the multi-task runs originally collected for 1B-1 (Figure 1) provides initial confirmation 
for H3.  
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Figure 7: Discriminative signal enhancement with simulated data. A) Synthetic 
raw data, in which conditions a (red) and b (green) induce changes in FC between 
four ROI’s. In the first two blocks, only FC between ROI’s 1 and 2 is informative: 
the are anti correlated in condition a and correlated in condition b. In the second 
two blocks, the FC between ROI’s 3 and 4 is informative. The objective of the 
spatiotemporal map is to highlight these moments of activity and thus correlation, 
and de-emphasize the uninformative fluctuations. B) Spatiotemporal weights 
inferred by correlation strength. C) Weighted time courses that can be use as 
regressors to map the informative fluctuations back to the brain. 
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Moreover, initial analyses on a previously acquired dataset in 
which we collected 100 functional runs in individual subjects 
performing a visual stimulation plus simple attention control task 
suggests that H1 is also valid. Figure 8 shows how connections with 
reliable strength values across the 100 runs (CVAR<0.3) are widely 
distributed throughout the entire cortex, extending well beyond primary 
visual cortex.  

As mentioned in the introduction to this report, we feel that, if 
confirmed, this finding of more extensive connectivity changes than 
magnitude changes would uncover another type of activation that has 
been previously overlooked in studies using univariate analyses of 
canonical functions representing the time course of the task. During 
brain activation, we hypothesize that extensive regions associated with 
carrying out calculations related to the task may show correlation 
changes but may not show a magnitude change that is reflected as a 
correlation with the expected canonical reference function typically 
used in SPM type analyses. {P. A. Bandettini, J. Gonzalez-Castillo, D. A. Handwerker} 

1C-5. Resting state Frequency Signatures across Cortical Regions 
Earlier work from SFIM showed that the correlation between different brain regions changes 

periodically over time[11]. One possible explanation for this observation is that fMRI time series have 
small, but consistently distinct frequency profiles. These regional frequency differences are usually hidden 
under much larger, common signal fluctuations. By calculating sliding window correlations over time, 
subtle differences are perhaps amplified as beat frequencies. For example, few people can distinguish two 
sounds that are 1Hz apart, but, if the tones are played together, a 1sec cycling of the signal volume is easily 
heard. In this study, we examined the power spectra (the strength of the time series fluctuations at different 
frequencies) of network-based regions of interest to see if these 
types of frequency variations are occurring between regions. 
The ability to characterize different time series in this manner 
would suggest that fMRI can probe subtle temporal dynamics 
that are typically examined using electrophysiological 
measures.  

In this study, we examine if we can more directly 
identify these relative frequency differences. Data were 
collected as part of another study from our group [10] from 11 
healthy adults as they were told to relax with their eyes closed 
for 60 minutes (TR=1s). Gray matter ROIs were made based on 
the 10 ICA-based networks defined in Smith et al.[25]. Our 
data didn’t include a sufficient number of cerebellar voxels and 
the left and right frontoparietal networks were merged. The 
brain slices in Figure 9A show the 8 defined ROIs. For each 
ROI, an average power spectrum was calculated for each 
subject. The average and standard deviation of two ROI spectra 
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Figure 8: 100 run (9 hours of averaging for 
a single subject) data of a simple visual 
attention task showing the consistent 
connectivity changes across nearly all 
parcels in the brain. 

�

Figure	9:	A)	ROI’s	used	to	create	time	series	power-
spectra.	B)	 Two	power	 spectra	 from	Regions	9&10	
and	 Region	 6.	 C)	 Difference	 spectra	 between	 the	
power	 spectra	 corresponding	 to	 the	 Frontoparietal	
region	and	all	 other	 regions.	The	arrow	 is	pointing	
from	 the	 two	 spectra	 subtracted	 to	 create	 the	
spectrum	to	where	the	arrow	is	pointing.

�



across subjects are shown in Figure 9B. We then subtracted the spectra within each subject for each pair of 
ROIs. Figure 9C shows the power spectrum differences from the frontoparietal ROI to all other ROIs. There 
are consistent and distinct frequency differences across subjects for different pairs of network ROIs. These 
results suggest that these power differences between pairs of brain networks are hidden due to variation 
across individuals, but visible when comparing power spectral differences within individuals. {P.A. Bandettini, J. 
Gonzalez-Castillo, D.A. Handwerker, C. Chang} 

Theme 2: Pushing the Limits of Hemodynamic Stability, Sensitivity and Specificity 

2A. Introduction: What more can we extract from hemodynamics? 
The second scientific focus of SFIM is on extracting as much information as possible from either 

resting-state or task-activated fMRI signal changes. In these past four years, we have advanced our initial 
findings on massively averaged fMRI data and have repeated the experiment at 7T on slightly modified 
tasks that include those that do not involve a motor response. With these experiments we demonstrated a 
“cognitive-load” dependence of these additional areas of activation and also categorized the extensive 
changes as transient, positive, or negative changes. Our findings include a confirmation of the previously 
hypothesized “task set change” region in the Insula. Analyses of these results also suggested with the 
experimental tasks, and likely most tasks, a majority of the brain shows negative signal changes. Using this 
data set we have also been able to characterize more fully different sources of noise as across session, across 
run, and within run. In this theme, we further demonstrate the effectiveness of multi-echo EPI for separating 
BOLD effects from non-BOLD effects in a time series. Specifically, in the past work section we report on 
our results for decreasing slow drift in long time series - allowing for the differentiation of non-typical long 
duration activations that are sensitive to time series drift.  

With regard to ongoing work within this second theme, we are happy to have had Dr. Laurentius 
Huber recently join us as a post-doc. He brought with him several pulse sequences optimized for high 
resolution anatomic and functional imaging at 7T. In the context of this theme, we have used high resolution 
Vascular Space Occupancy (VASO) - sensitive to venous blood volume changes - to map activation related 
layer dependent activity in sensory and motor cortex during a finger tapping / movement-without-tapping 
task. We have also used this sequence to help determine the layer specificity of predominant resting state 
fluctuations across the cortical ribbon throughout the brain. These initial results are extremely exciting as 
they suggest that the exquisite capillary specificity of VASO gives unprecedented ability to map layer-
specific activation and fluctuations. This ability, we hypothesize, will lead to directional input inferences 
based on layer input location, and therefore will move fMRI into the realm of teasing out directional cortical 
circuitry.  

Lastly, we are working on methods for improving naturalistic paradigms that involve movie viewing. 
We demonstrate that the use of multi-echo EPI provides a significant boost in signal to noise for cross time 
series correlation analysis. Our ultimate goal is to develop a naturalistic paradigm to be used for comparison 
across normal and patient populations and to draw out individual differences in specific responses to aspects 
of the stimuli. Here we found that a multi-echo EPI sequence increases cross-run correlation sensitivity. 
Because of the transient nature of naturalistic paradigms, time series averaging may not be as viable as an 
option, therefore reinforcing a critical need for multi-echo EPI based denoising as it can improve time series 
stability. 
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2B. Past Studies 

2B-1. Whole brain activation at 7T 
In a previous study[12], we 

showed that when BOLD time series 
data are massively averaged, the majority 
of the brain shows statistically significant 
hemodynamic responses time-locked 
with the experimental paradigm. Such a 
finding questions localizationist views of 
brain function as well as the precise 
meaning of a spatial null-hypothesis in 
brain mapping.  

The presence of distributed time-
locked hemodynamic responses is not 
sufficient to make the claim that the 
entire brain is “activated” by these tasks 
as many of these waveforms could 
represent a “disengagement” of cortical 
regions in association with a task. To 
address this and other open questions, we 
carried out a follow up experiment on 
our 7T system [26].  

First, the relationship between activation extent and task demands was investigated by varying 
cognitive load across participants. One subject performed a letter/number discrimination task superimposed 
on a full field-of-view (FOV) flickering checkerboard (same as in [12]); a second subject simply fixated on 
the center of a full FOV flickering checkerboard; and 
a third subject only received visual stimulation (i.e., 
flickering checkerboard) in the left hemifield of the 
FOV while fixating. Second, the tissue specificity of 
responses was probed by scanning at higher 
resolution afforded by the 7T. Finally, the spatial 
distribution of 3 primary response types— namely 
positively sustained (pSUS), negatively sustained 
(nSUS), and transient—was evaluated using a newly 
defined voxel-wise wave-shape index that permits 
separation of responses based on their temporal 
signature. About 86% of gray matter (GM) became 
significantly active when all data entered the analysis 
for the most complex task, as indicated in Figure 10. 
Activation extent scaled with task load and largely 
followed the GM contour. The most common 
response type was nSUS BOLD, irrespective of the 
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Figure 10: Spatial distribution of response types as categorized by the waveshape 
index (w) in a set of sagittal and axial slices for all 6 participants. A gradient scale 
was used to color each voxel according to its w index. Additionally, contours were 
overlaid in the map to depict the classification of voxels in 3 main primary response 
types: red=positively sustained responses (0.33<w<1); green=transient responses 
(−0.33<w<0.33); and blue=negatively sustained responses (−1<w<−0.33). 	
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Figure 11: (A) Relative size of mean responses, as categorized by w 
into 20 bins, for active GM voxels in the 7T fFOV + Task subject. 
Positively sustained, transient, and negatively sustained responses 
are colored in red, green, and blue, respectively. (B) Histograms of 
w as a percentage of active GM for each subject (average of 3T 
subjects shown with standard error bars), showing the relative 
abundance of each response type. (C) Bar graph showing 
contributions of each response type relative to total GM volume for 
all 7T and the average of the 3T subjects. The percentage of GM 
activation that each response type is responsible for in each subject 
is overlaid in black.
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task, as shown in Figure 11.  
These results suggest that widespread activity associated with extremely large single-subject fMRI 

datasets can provide valuable information about the functional organization of the brain that goes undetected 
in smaller sample sizes. They also constitute additional evidence in support of a biological significance for 
widespread BOLD signal changes in larger-than-usual fMRI datasets. Lastly, while much of the brain does 
show de-activation, evidence from 1B-1 suggests that the larger spatial extent of BOLD signal changes may 
help discriminate specific tasks, thus containing information about the task as opposed to a more general 
“deactivation” response. This work has been reported in Cerebral Cortex [26]. {P. A. Bandettini, R. W. Cox, J. 
Gonzalez-Castillo, D. A. Handwerker, C. W. Hoy, S. J. Inati, V. Roopchansingh, Z. S. Saad} 

2B-2. Multi-Echo EPI for slow change assessment 
Multi-echo acquisition is more frequently used in quantitative T2⁎ measurements than in fMRI. In 

the context of fMRI, the acquired echoes can be combined to improve the overall image SNR and recover 
signal dropout. The recently developed multi-echo (ME-ICA) denoising method[19] uses TE-dependence 
throughout the analysis pipeline to separate time series into BOLD and non-BOLD signal in an automatic, 
data driven way that is based on the principle that BOLD contrast is simply a change in T2*, while all other 
changes, as measured by the multi-echo acquisition (TE=0 intercept - suggesting T1 or proton density 
change), are non-BOLD and do not show TE dependence. ME-ICA differs from other automated ICA 
component selection methods in that no restrictions are placed on the time–frequency or anatomical 
localization characteristics of the components in the selection process. Therefore, it has the potential to 
separate artifactual, hardware-related drifts, which would fall into the non-BOLD subspace, from 
hemodynamic signal changes that are likely of neuronal relevance. Importantly, this enables study of low-
frequency BOLD components that would ordinarily be discarded in the band-pass filtering step that is 
applied during preprocessing. 

In this study, we used a visual task with slowly changing contrast over 5 min as an example of a 
s low BOLD change.  We compare 
conventional acquisition and processing to 
ME-ICA denoising[19]. We demonstrate the 
ability to separate a slowly changing or long 
duration constant task response from baseline 
drifts using ME-ICA denoising in a case where 
the task is undetectable in conventionally 
preprocessed data. Figure 12 shows a 
comparison between a weighted average 
“optimally combined”(OC) multi-echo data 
set, de-trended OC data, and multi-echo 
denoised data, clearly demonstrating the 
ability for ME-ICA to even differentiate a 
sigmoidal visual stimulation contrast evolution 
over 300 seconds vs a linear contrast evolution 
(bottom right plot). This work has been 
published in NeuroImage [27]. {P. A. Bandettini, J. 
W. Evans, S. G. Horovitz, P. Kundu} 
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Figure 12. Comparison between optimally combined (OC), detrended OC, 
and multi-echo denoised (me-dn) time series for 300 second stimulation runs, 
clearly showing the ability of me-dn to stabilize even a long baseline.
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2C. Current Studies 

2C-1. Layer specific mapping in sensory and motor cortex at 7T using VASO 
The cortex consists of up to six cortical layers. Based on the different anatomically defined input-

output characteristics across cortical layers, individual brain areas are expected to show different layer-
dependent activity profiles according to their feed-forward/feed-back input. High-field high-resolution fMRI 
on a layer-dependent level might be able to elucidate afferent and efferent functional connectivity in healthy 
human volunteers using task activation or even resting state fMRI signal.  

Here, we report on an fMRI acquisition and analysis method that we are developing to measure 
layer-dependent activation and fluctuations. To account for limited signal-to-noise-ratio at sub-millimeter 
resolutions, acquisition and reconstruction strategies were optimized on a subject specific level, including 
custom designed RF-coil combination schemes, field of view geometry, application of FLASH-GRAPPA, 
and 7T field strength. In order to minimize effects of locally non-specific large draining veins in 
conventional GE-BOLD fMRI, we sought to map layer-dependent activity using measures of cerebral blood 
volume (CBV) with VASO[28]. VASO is understood to be sensitive to blood volume changes. Evidence 
suggests that activation-induced blood volume changes are localized to the microvasculature whereas 
BOLD contrast is sensitive to blood oxygenation changes in all vasculature.  

We used the above approach for both a task (finger tapping vs finger movement without tapping) and 
for resting state fluctuation assessment. We found significant finger-tapping induced activity on a layer-
dependent scale. The laminar distribution of task-induced activity and resting-state correlation results are 
observed to be specific to the unique input-characteristics for the corresponding tasks and resting-state seed 
regions.  

Figure 13A shows that fMRI signal in upper layers of primary motor cortex (M1) have highest 
correlation values with resting-state fluctuations in primary sensory cortex, in line with the understanding 
that M1 receives its input from primary sensory cortex (S1) in upper cortical layers as opposed to the deeper 
layers. This result was further 
validated by comparing task-
induced activity in M1 for finger-
tapping involving finger tip 
touching compared to finger-
movement without touch. The 
non-touching tasks differ in 
reduced exteroception in S1 and 
correspondingly reduced S1-input 
into M1. Figure 13B shows the 
corresponding layer-profiles for 
finger-tapping activity in M1 
with and without touching. These 
results confirm the resting state 
results, namely that input from S1 
into M1 is localized in upper 
cortical layers.  

We have taken our resting 
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Figure 13: A) Layer specificity of resting state fluctuations. M1 appears to have most resting-
state fluctuation energy in the upper as well as the lower layers(blue line), however only the 
upper layers show a strong correlation with a seed in S1 (black line), suggesting input from S1 
occurring here. B) Validation of the resting state results based on comparing task-induced 
activity with differing sensory activity: tapping with (blue line) and without (yellow line) 
touching. This modulation clearly alters the activity in layer II and III of motor cortex - again 
suggesting that this is layer that receives touch-specific sensory input. C) Illustration of cortical 
layering and position of upper and lower layers used in Figures A and B.
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state analysis further, classifying the 
fluctuations in cortical ribbon as being 
either upper layer dominated, upper and 
lower layer dominated, and middle layer 
dominated. A single slice showing this 
preliminary classification of fluctuation 
location appears to give clear results 
showing a differential classification 
between frontal, motor and parietal 
regions. This map is shown in Figure 14.  

We conclude that the application 
of the proposed resting-state fMRI 
protocol can help to investigate 
underlying feed-back/feedforward characteristics of resting-state networks and their inter-laminar 
connectivity[29]. {P. A. Bandettini, J. Gonzalez-Castillo, D. Handwerker, L. Huber, D. Jangraw, S. Marret, B. A. Poser} 

2C-2. Multi-echo EPI and Improvements on Massive Trial Repetition 
ME-ICA has been demonstrated as a way to empirically 

identify and remove non-BOLD signal from fMRI time series to 
improve the contrast to noise ratio. We examined how ME-ICA 
based fMRI could be used to improve activation extent. A goal of 
this study was to first determine if ME-ICA can achieve the 
previously found extensive activation - from single-echo time series 
- with less data. For each analysis, we compared single-echo fMRI 
(middle echo of the multi-echo acquisition), the “Optimally 
Combined” weighted average of the 3 echoes, and the “de-noised” 
result of the ME-ICA analysis.  

The task was to identify numbers or letters in a flashing 
checkerboard. The timing was a 20 sec on and 20 sec off blocked 
design. The task and timing was identical to that described in 
Gonzalez-Castillo et al. [12]  

As Figure 15 shows, multi-echo EPI substantially improved 
sensitivity - as measured by the fraction of voxels passing statistical 
threshold for a given number of averages. The largest differences 
were observed between 10 and 40 averages. With Volunteer 1, the 
same results as with 100 runs could be obtained with about half the 
number of averages. Also, there was an over 30% activation extent 
increase when fewer than 10 runs were used. Volunteer 1 showed an 
additional large increase of ME-ICA denoised data over Optimally 
Combined. Further work needs to be performed to understand the remaining sources of noise in ME-ICA so 
that the results are consistently better than Optimally Combined as well. {P.A. Bandettini, L. Buchanan, J. Gonzalez-
Castillo, B.E. Gutierrez, D.A. Handwerker, D.C. Jangraw, V. Roopchansingh} 
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Figure 14. Spatial features: M1 is dominated from fluctuations in upper and lower 
cortical layers (orange). S1 is dominated from fluctuations in middle cortical layers. 
Frontal cortex is dominated by upper layer fluctuations. Parietal regions are 
dominated, as is S1, by middle layer fluctuations. This layer dependence may allow 
maps of relative feedback vs feed-forward circuits to be disentangled.  
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Figure 15. Percent activated voxels as a function 
of the number of 5 min runs. 
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2C-3. Cross run correlation improvements with multi-echo EPI 
As fMRI researchers increasingly tackle naturalistic, complex experimental paradigms, response 

reliability is often used in place of response amplitude or magnitude as a metric of each voxel’s 
responsiveness to a stimulus.  To determine voxel response reliability, a voxel’s response from one run is 
used as a model for the same voxel’s response in the other runs, a process that is repeated for each possible 
pairing of runs. Voxels with “reliable” responses are those that consistently show large positive correlations 
across pairings[30]. This approach, often called intra-subject correlation analysis, is especially useful in 
cases where the stimulus cannot be used to create a simple canonical reference function - as in the case of 
free viewing of a naturalistic movie. Such studies have revealed many areas of consistent activation in both 
across-subject and within-subject groupings, inspiring more researchers to adopt the approach. But the 
relatively unconstrained nature of these paradigms translates to a low contrast-to-noise ratio, so response 
reliability measures have much to gain from de-noising techniques.  

To this end, we applied ME-ICA[18], to data from the free viewing of a naturalistic movie. In the 
current study, two subjects watched a 7-minute cartoon movie 16 and 17 times respectively across multiple 
days. We then analyzed the intra-subject correlations of voxels across runs. The response reliability was 
assessed in this way both with and without ME-ICA de-noising. 

The ME-ICA results demonstrate that the movie evokes reliable brain-wide activation that is much 
more extensive than standard data collection and processing methods might suggest. When ME-ICA was 
used instead of standard single-echo processing, the number of voxels showing significant activation (FDR 
corrected q<0.05) increased from 21% to 47% in subject 1 and from 22% to 34% in Subject 2. This is 
shown in Figure 16. The voxels 
whose response reliability was 
revealed by ME-ICA but not by 
single-echo processing are 
significantly more likely to be in 
gray matter than in-brain voxels 
chosen at random (one-tailed 
b i n o m i a l t e s t , p < 1 e - 1 5 ) , 
suggesting that they are driven by 
neural activity. Preliminary 
analyses indicate that some of 
these areas are driven by high-
level properties of the movie 
such as the presence of faces and 
the whole-body motion of 
characters. With this sensitivity 
boost, future studies using intra-
SC will be more likely to find 
more subtle as well as more 
reliable responses to naturalistic stimuli. This could lead to diagnostic tools based on targeted movies that 
capture the scenarios where symptoms are typically observed. {P. A. Bandettini, J. Gonzalez-Castillo, B. Guiterrez, D. A. 
Handwerker, D. C. Jangraw} 
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Figure 16: A) Average correlation coefficient r across intra-SC pairings, thresholded at FDR-
corrected q<0.05 for Subject 1 and 2, using Echo 2 (left) or ME-ICA denoised (right) time 
series as input. B) Reverse cumulative histogram of voxel-by-voxel Z scores across the whole 
brain for Subject 1 (top) and 2 (bottom). 
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Theme 3: Novel Contrasts and Interventions 

3A. Introduction: Expanding the utility of fMRI and MRI 
The third SFIM research theme is a step outside the work on fMRI connectivity, dynamics, and 

resolution. The focus here is on pushing the limits of what can be done with MRI in general and how 
interventions other than brain activation may influence MRI and fMRI signal. Our primary completed 
project has been a study that characterizes anatomic changes in hippocampus with an exercise intervention 
over the course of several weeks. The finding was that that anterior hippocampus increases in size[3, 6]. In 
this work we apply several different contrast weightings to determine what is actually changing with this 
intervention.  

Our ongoing work within this third theme involves better understanding of BOLD signal changes 
that rapidly occur during the Valsalva maneuver - as this maneuver may turn out to be a relatively easy 
means by which global hemodynamic changes are induced - allowing for easily calibrated fMRI. For 
calibrated fMRI, a stress such as hypercapnia is used to cause a global flow change without an increase in 
cerebral metabolic rate. Such a map corresponding to a whole-brain flow increase reflects, essentially, the 
BOLD weighting function for all voxels. Obtaining this with more ease would be desirable. The Valsalva 
maneuver produces similar maps to those created with hypercapnia; however, we don’t fully understand the 
underlying vascular events leading to our observations. In this study we use VASO - a method for observing 
blood volume changes - during the Valsalva maneuver.   

In a followup to the above study on changes in hippocampal volume with exercise, we have 
determined, using a susceptibility-weighted anatomic imaging approach, that iron deposition in the basal 
ganglia increases with fitness. Following up on our layer dependent resting state and activation study, we 
have compared the performance of 3D-EPI-VASO with SMS-VASO and found that each is superior in a 
specific context. Incidentally, using a high resolution and high speed T1 quantification sequence, we found a 
localized T1 increase in gray matter associated with brain activation. We also detected a corresponding 5% 
swelling in gray matter volume. We are currently investigating the source of the rapid gray matter volume 
change. 

3B. Past Studies 

3B-1. Anterior Hippocampal Volume Increase with Aerobic Exercise 
The hippocampus has been shown to demonstrate a remarkable degree of plasticity in response to a 

variety of tasks and experiences. For example, the size of the human hippocampus has been shown to 
increase in response to aerobic exercise. However, it is currently unknown what specific mechanisms 
underlie these changes. This study is a collaboration with Heidi Johansen-Berg’s group in Oxford, carried 
out by Adam Thomas as part of his Ph.D. thesis work. Animal and human studies provide a number of 
candidate mechanisms for exercise-driven or experience-dependent change in brain structure. For example, 
it has been shown that aerobic exercise increases the rate of neurogenesis in the dentate gyrus region of the 
rodent hippo- campus and increases CBV in the same region in humans. Environmental enrichment, a less 
specific manipulation, has been shown to increase myelination of corpus callosum fibers. In rats, some 
effort has been made to relate the morphometric measurements commonly used in neuroimaging to 
underlying changes in the neural tissue elicited by other behavioral training paradigms, but little is known 
about what drives these changes in humans. 
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Our goals in designing this 
experiment were threefold: First, to 
explore hippocampal volume change with 
increased aerobic exercise in a younger 
population and on a shorter time scale 
than previously shown; Second, to 
determine if this volume change is 
maintained in the absence of continued 
aerobic exercise; And third, to attempt to 
use multi-modal MRI to explore what 
might be driving the hippocampal volume 
change. Based on prior histological 
studies, we specifically chose to explore 
potential changes in both vasculature and 
myelination. Here we scanned sedentary, young to middle-aged human adults before and after a six-week 
aerobic exercise intervention using nine different neuroimaging measures of brain structure, vasculature, 
and diffusion. Surprisingly, we found no evidence of a vascular change as has been previously reported. 
Rather, the pattern of changes is better explained by an increase in myelination as shown in Figure 17.  
Finally, we showed that hippocampal volume increase is temporary, returning to baseline after an additional 
six weeks without aerobic exercise. This is the first demonstration of a change in hippocampal volume in 
early to middle adulthood suggesting that hippocampal volume is modulated by aerobic exercise throughout 
the lifespan rather than only in the presence of age related atrophy. It is also the first demonstration of 
hippocampal volume change over a period of only six weeks, suggesting that gross morphometric 
hippocampal plasticity occurs faster than previously thought. This study was recently published in 
NeuroImage[6]. {P. A. Bandettini, H. Dawes, A. Dennis, S. Foxley, L. Matthews, M. Morris, M. Jenkinson, H. Johansen-Berg, S. H. 
Kolind, T. Nichols, N. B. Rawlings, C. J. Stagg, A. G. Thomas} 

3C. Current Studies 

3C-1. Iron deposition in  basal ganglia increases with fitness. 
It has been well established that the amount of iron in several basal ganglia structures increases 

asymptotically with age, and is a feature of neurodegenerative disease. The significance of this iron 
accumulation is not well understood however. The purpose of this study was to understand the relationship 
between age, fitness, cognition and iron deposition in the brain.  

 Fifty-six participants (33 women, mean age 32.1, S.D. 10.8) underwent fitness and cognitive 
assessment as well as a 3T MRI scan. The fitness 
test was a continuous, incremental test conducted 
on a cycle ergometer. Cerebral Blood Volume 
(CBV) was measured using two MPRAGE scans 
collected before and after contrast agent injection 
(Dotarem, 0.1ml/kg). Susceptibility weighted 
images (SWI) were collected using a standard 
multi-echo SWI sequence distributed by Siemens 
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Figure 18. Two clusters in the right 
putamen and medial frontal cortex 
s h o w r e g i o n s o f p o s i t i v e 
correlation between fitness and 
susceptibility. Yellow shows sub-
threshold regions of positive 
correlation. Bottom: Scatter plot 
shows susceptibility values for the 
green regions vs. TTE to visualize 
the distribution of values. �

Figure 17.  Top: Z-scores of change in 
each measure from before to after 
exercise in anterior hippocampus. 
Decreases shown in blue and increases 
in red. Bottom: Plot of Z-scores from 
individual tests (open circles) predicted 
in the case of an increase of vasculature 
vs. a predicted increase in myelination 
(scale for both is shown on left Y-
axis).This Z-score is significant for the 
myelin test (Z = 2.64) but not for the 
vasculature test (Z = − 1.05). GM = gray 
matter, WM = white matter, QSM = 
quantitative susceptibility map, MD = 
mean diffusivity, SWI = susceptibility-
weighted image, FA = fractional 
anisotropy, CBV = cerebral blood 
volume.�



with 1.3 mm isotropic voxels, TE = 6.72 ms & 24.60 ms, TR = 30 ms, matrix size = 192 x 192, and 
GRAPPA factor = 2. 

We found no relationship between any cognitive measure and the age-related accumulation of iron in 
the basal ganglia during young to middle adulthood. However, we do show that susceptibility correlates 
with fitness. Figure 18 shows two clusters in the right putamen and medial frontal cortex that show linear 
relationship between SWI signal (inversely proportional to the susceptibility source concentration) and 
fitness, suggesting iron deposition may be a by-product of cardiovascular activity. {P. A. Bandettini, H. Dawes, A. 
Dennis, H. Johansen-Berg, N. B. Rawlings, C. J. Stagg, A. G. Thomas} 

3C-2. Exploring Valsalva-induced changes using VASO 
The Valsalva Maneuver involves an increase in intrathoracic pressure during a breath hold that alters 

blood pressure and heart rate. We recently published work that shows, for a constant breath hold duration, 
the fMRI BOLD-weighted response scales with chest pressure magnitude. Both the undershoot during the 
breath hold and the signal peak after the hold ends increases with increasing pressure[4]. This parametric 
modulation of cerebrovascular 
reactivity by pressure has the 
potential to be used as a 
relatively simple cerebrovascular 
reactivity probe, however the 
mechanisms underlying the 
fMRI signal changes aren’t fully 
understood. We are continuing 
this work using Vascular Space 
Occupancy (VASO) to measure 
BOLD-weighted and blood 
volume-weighted changes during 
Valsalva challenges to determine 
to what degree and at what phase 
of the Valsalva maneuver, blood 
volume changes contribute. 
Hypothesized mechanisms for 
the rapid decrease in signal is either an increase in blood volume, a decrease in flow, or a decrease in the 
presence of CSF in the same regions that have highest blood volume. Subsequent increases in signal may 
also be explained by the same variables reversing in sign.  

We collected 7T data using variants of the VASO sequence described in Huber et al. [31]. Each run 
includes multiple trials of paced breathing followed by a Valsalva Maneuver or breath hold without chest 
pressure feedback. The Figure 19 shows that breath hold causes a whole-brain BOLD-weighted response. 
As shown previously, the BOLD signal has two phases - below baseline with the onset of the Valsalva 
Maneuver and above baseline during the recovery period. The VASO-weighted response is also whole-
brain, but the signal magnitude changes have a distinct spatial profile. Continuing work will compare the 
temporal and spatial profiles of these responses to better understanding what cerebrovascular mechanisms 
underlie the response to the Valsalva Maneuver. (P.A. Bandettini, J. Gonzalez-Castillo, B.E. Gutierrez, D.A. Handwerker, L. 
Huber, P. Panwar, P. Wu) 
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Figure 19. The VASO (red line), and BOLD (blue line) responses  from five different sets of 
voxels having differing response profiles. The primary response is the green box: The acute 
decrease in VASO, corresponds to a blood volume increase (BOLD also decreases), and a 
VASO increase afterwards corresponds to a blood volume decrease. 	
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3C-3. Blood volume fMRI with 3D-EPI-VASO: Any benefits over SMS-VASO? 
Quantitative cerebral blood volume (CBV) fMRI has the potential to overcome several limitations of 

BOLD fMRI. In particular, it offers superior localization specificity down to the level of cortical layers and 
its quantitative nature helps to better understand and ‘calibrate’ the conventional BOLD response. Non-
invasive CBV-fMRI with VASO (Vascular Space Occupancy), however, is inherently a single-slice approach 
and limited with respect to its imaging coverage. This limitation can be overcome with recently developed 
advanced readout strategies such as simultaneous multi-slice (SMS) EPI or 3D-EPI. With these imaging 
strategies, reductions in volume acquisition times can be achieved by parallel acceleration along the 
secondary phase encoding direction and minimal g-factor penalty using controlled aliasing with blipped 
CAIPIRINHA. 

In this study we sought to 
overcome coverage limitations that are 
involved with VASO data collection 
by combining it with the advanced 
readout methods of 3D-EPI and SMS-
EPI and comparing them across a wide 
range of resolutions at 7T.  Results in 
Figure 20A show that the temporal 
stability and the corresponding 
sensitivity to detect finger tapping 
activity is higher for 3D-EPI-VASO 
compared to SMS-VASO in the 
thermal noise dominated regime of 
sub-millimeter resolutions. In the 
physiological noise dominated regime 
at lower resolutions, however, SMS-
VASO shows better performance 
compared to 3D-EPI-VASO. So, in the presence of a temporal signal to noise higher than about 30, it is 
recommended to use 2D EPI or SMS, but when below 30, it is recommended to use 3D EPI for VASO.  

Figure 20B shows results for a breath hold experiment with task induced head tilting. It can be seen 
that even with an inferior sensitivity, at low resolutions, 3D-EPI-VASO can be more practical than SMS-
VASO, as it can better be used to account for motion artifacts. We conclude that because of its superior 
sensitivity at ultra high resolution, and its reduced sensitivity to head motion 3D-EPI VASO may play an 
important role in VASO-fMRI. {P.A. Bandettini, D. Handwerker, L. Huber, D. Ivanov, S. Marret, P. Panwar, B. A. Poser, K, Uludağ} 

3C-4. Fast Dynamic Measurement of Functional T1 and Grey Matter Thickness 
The acquisition of multi-shot high-resolution anatomical T1-weighted brain images plays a key role 

in the daily routine of neuroscience. Specifically it is widely used to image anatomical features, e.g. with 
respect to pathological anomalies, anatomical changes in plasticity-studies, and it is used as an anatomical 
reference in fMRI studies. In these application however, quantitative T1-imaging is limited by its relatively 
long acquisition times of several minutes, and its application in fMRI-studies is limited by having different 
distortions compared to EPI-based functional data. 

�21

Figure 20. A) Activation maps of CBV 
change [ml/100ml tissue} for right hand 
finger tapping across a wide range of 
resolutions, acquired with 3D-EPI-VASO. 
Note the localized specificity of CBV 
changes to layer-dependent activity (blue 
arrow) and to individual GM bands in the 
central sulcus (red arrow. B) SMS-VASO 
and 3D-VASO results for a breath holding 
experiment with task-induced head motion. 
Note that the different T1-weighting in 
different slices of SMS-VASO can result in 
severe motion artifacts. 
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Resent developments of advanced 
through-plane acceleration involving multi-
band excitation with controlled CAIPI-
aliasing, and the advent of advanced in-plane 
acceleration with FLEET or FLASH GRAPPA 
reference lines boosted the imaging efficiency 
of EPI-based acquisition methods to achieve 
high-resolution whole brain coverage within a 
few seconds, with comparable signal quality as 
multi-shot ‘anatomical’ MRI. 

Here we test the applicability of state-
of-the-art SMS-FLEET-EPI in combination 
with inversion-recovery preparation to obtain 
high-resolution quantitative T1-maps within 3 
seconds with distortion-matched geometry 
compared to functional scans. 

Figure 21A depicts the image quality of 
a quantitative T1-map acquired within 9 sec in 
a representative health volunteer. Figure 21B 
and C show the application of the new T1-
mapping scheme as an anatomical reference 
for EPI-based functional results. Figure 21B 
depicts a representative potential artifact of 
using unmatched distortions as a reference (green arrows), and how it can be avoided with the new 
distortion-matched EPI-based T1-map. The distortion matched T1-map can better delineate the cortical 
ribbon, even down to the level of cortical layers. Figure 21C shows an example, where unmatched 
distortions of the MP2RAGE-reference shift an M1/S1-activity blob more anterior; resulting in falsely 
insignificant activity in S1.  

Figure 21D shows how the reduced acquisition duration of the EPI-based T1-mapping can be used in 
plasticity studies. The TR of 3 sec can help to track rapid changes of anatomical features, such as GM-T1, or 
cortical thickness on the fly, while they arise. When performing a finger-tapping task, the EPI-based T1-
mapping can detect T1-increases up to 100 ms and GM-swelling up to 5%.{P.A. Bandettini, D. Handwerker, L. Huber, 
D. Jangraw, S. Marrett, B. A. Poser, A. Thomas} 

—- 
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Figure 21. Results from EPI based T1-mapping method: A) Quality of T1 
maps acquired in 9 sec. B) Necessity of having distortion-matched anatomical 
reference to delineate the cortical ribbon. C) Even small distortions of a few 
mm can result in deletion of entire brain areas. D) Feasibility test of tracking 
anatomical “plasticity-changes” while they occur during a finger tapping task. 
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Resource Sharing and Data Sharing 

We have shared data from our 100 run study (ref 12 & 26) as well as from our ongoing cortical state (ref 9) 
study. We plan to deposit all our data into our NIH data repository that will be started through the Data 
Sharing Core Facility. Until then, we will keep it in our own archives (NIH Helix Cluster) and will make 
available on request.  

De-identified data can be shared with any researcher who signs a data use agreement as defined in NIH IRB 
protocol 93M0170. Data has been shared through the central.xnat.org repository and using https://
nihcesaev.cit.nih.gov for specific requests from non-NIH researchers. 

We have shared example data upon request from: 
Olivia Viessmann, James Kolasisnki, FMRIB, Oxford 
Rosa Panchuelo and Susan Francis, Nottingham 
Gopi (Kaundiniya Gopinath) from Emory University in Atlanta 
Markus Barth from Queensland 
Olivier Reynaud from Lausanne 

Much of our code is made available through public GitHub repositories. 

Collaborations 

Cesar Caballero-Gaudes - BCCBL, San Sebastian, Spain  

Vince Calhoun - MIND Institute, Albuquerque, NM  

Robert Cox - (Gang Cheng, Rick Reynolds, Ziad Saad) - SSCC, NIMH  

Jeff Duyn - (Catie Chang), AMRI, NINDS 

Mark Hallett - (Silvina Horovitz), HMC, NINDS 

Demo Ivanov - Maastricht University, Maastricht, The Netherlands 

Heidi Johansen-Berg - Oxford University, Oxford, UK 

Alex Martin - (Steve Gotts), LBC, SCN, NIMH 

Tom Nichols - University of Warwick, UK 

Benedikt Poser - Maastricht University, Maastricht, The Netherlands 

Kamil Uludag - Maastricht University, Maastricht, The Netherlands 

Eric C. Wong - UC San Diego, CA 

Leslie Ungerleider - (David Pitcher, Zachariou Valentinos), LBC, SN, NIMH 

Elliot Stein - NRB, NIDA, Baltimore, MD 

FMRI Core Faciliy - ( Andy Derbyshire, Souheil Inati, Sean Marrett, Vinai Roopchansinsh) 
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Resources Requested 

We request the following: 

1. Increased other objects budget to cover travel and purchase of equipment. ($50K/yr). As my lab has 
expanded since four or even eight years ago, my annual budget has not increased concordantly to allow 
for increased travel and equipment expenditures.  

2. One additional post-bac IRTA position to help support the work of my 4 post docs. An optimal 
combination is to have one post bac for every post doc. At the moment we have one post bac for every 
two post docs, which causes some strain as post bac’s can be overworked and spread too thinly, and post 
docs may not have the assistance that they need at times.  
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