
Section on Functional Imaging Methods 
(2015-2020) 

Peter A. Bandettini, Ph.D., Chief 
Report for Board of Scientific Counselors’ Review 

Table of Contents 
Executive Summary ................................................................................................................................................ 2 

Significance ............................................................................................................................................................ 3 

Innovation and Appropriateness to the Intramural Environment ....................................................................... 3 

Background and Progress ...................................................................................................................................... 4 
High Spatial Resolution fMRI .......................................................................................................................................... 4 

Completed work .............................................................................................................................................................................. 5 
Sensitivity vs. Specificity ............................................................................................................................................................. 5 
Selective Layer Activation in Motor Cortex ................................................................................................................................ 6 
Functional Mapping of Sensorimotor Digit Organization ........................................................................................................... 6 
Digit-Specific Layer Modulation with Tactile Prediction ............................................................................................................. 7 
Layer-Specific Activation in Dorsal Lateral Prefrontal Cortex ..................................................................................................... 8 
Resting State Assessment of Visual Hierarchy ............................................................................................................................ 9 

Ongoing Work ................................................................................................................................................................................ 11 
Vascular calibration .................................................................................................................................................................. 11 
Using VAPER to Probe Visual – Auditory Activation in Planum Temporale .............................................................................. 12 
Using Layer-fMRI for Whole Brain Functional Connectome Studies ........................................................................................ 13 

Understanding and Leveraging Time Series Information ........................................................................................... 15 
Completed work ............................................................................................................................................................................ 15 

Spontaneous thought assessment by dimensionality reduction and deconvolution ............................................................... 15 
Deriving Individual Information from Naturalistic Stimuli ........................................................................................................ 17 
Trait Paranoia Shapes Inter-Subject Synchrony ........................................................................................................................ 18 

Ongoing Work ................................................................................................................................................................................ 19 
Inter-Subject Correlation During Narratives Reveals Reading Ability ....................................................................................... 19 
Decoding Cognitive States During Repeated Movie Viewing .................................................................................................... 20 
EEG Brain Synchrony Differences in Mono vs Dizygotic Twins ................................................................................................. 20 
Data-driven Estimation of Vigilance and Wakefulness in Resting-state fMRI ........................................................................... 21 
Rapid Event-Related Decoding ................................................................................................................................................. 22 

List of SFIM Publications Since Last BSC Report (44 papers, 1 book) ............................................................ 23 
Non-SFIM papers co-authored by SFIM members since last BSC report (21 papers) ................................................................... 26 

Resource Sharing and Data Sharing ................................................................................................................... 28 

Collaborations ....................................................................................................................................................... 29 

Resources Requested ............................................................................................................................................ 30 

Bibliography .......................................................................................................................................................... 31 
 
  



 2 

Executive Summary 
 
It has been almost thirty years since functional MRI (fMRI) was first demonstrated, and during this time, it has 
been embraced as an essential tool for a wide range of neuroscience and clinical questions. This widespread 
utilization has been driven by fundamental advances in fMRI methodology that continue to improve its precision, 
reliability, and interpretability. Functional MRI methodology includes MRI hardware; pulse sequences for high 
temporal and spatial resolution as well as hemodynamic specificity; image reconstruction; artifact and large vessel 
identification and mitigation; hemodynamic transfer function characterization; multi-modal integration; paradigm 
design; time series analysis; group and subject comparison; and computational and network model integration. 
 
MRI pulse sequences include strategies for higher temporal and/or spatial resolution acquisition as well as 
increased brain coverage. They are also designed for selective hemodynamic contrast sensitivity. In recent years, 
contrast sensitivities have included gradient-echo blood oxygen level dependent (BOLD) contrast – sensitive to 
all vessel sizes, spin-echo BOLD – sensitive to both small compartments and small vessels, arterial spin labelling 
(ASL) - sensitive to perfusion, vascular space occupancy (VASO) – sensitive to blood volume changes, and multi-
echo EPI (ME-EPI) which has the ability to tease out pure BOLD effects from inflow and motion. SFIM has been 
developing, testing, and applying these novel pulse sequences as indicated in the report.  
 
Time series analysis is intertwined with paradigm design strategies. Over the years, paradigm designs have 
evolved to include event-related, hybrid blocked/event-related, neuronal adaptation, resting state, naturalistic 
stimuli and/or free behavior tasks, and real time feedback. Likewise, analyses have evolved to include correlation 
or connectivity analysis, dynamic connectivity analysis, multivariate decoding and encoding, and inter-subject 
correlation (ISC). Features beyond just fMRI magnitude and correlation have included undershoots, transients, 
latencies, and shapes. For multivariate decoding, voxel-wise activity patterns have been found to be informative. 
Model free approaches including Independent Component Analysis (ICA) and ISC, as well as deep learning 
approaches, have proven to be useful for both exploratory and hypothesis-driven analysis. Analysis methods 
tailored to multi-echo acquisition have been developed to identify and keep those components which show BOLD 
contrast as revealed by an echo time (TE) dependence in the data.  SFIM has been developing, testing, and 
applying many of these paradigm and processing approaches, as indicated in the report.  
 
Over the past twenty years, the Section on Functional Imaging Methods (SFIM) has been working on the 
advancement, refinement, and application of every methodology mentioned above. SFIM is focused on increasing 
the utility of fMRI to catalyze new clinical and basic research insights and applications. The expertise of our 
group is diverse, including MR physicists, engineers, computer scientists, basic neuroscientists, and cognitive 
neuroscientists. We collaborate with other groups in NIMH and around the world that apply our methods to study 
specific neuroscience questions in healthy volunteers and patient populations. 
 
Over the past four years, SFIM’s two primary areas of focus have been ultra-high spatial resolution fMRI at 
high field (7 Tesla) and understanding and leveraging time series information. For our high-resolution focus, 
we have developed pulse sequences, paradigms, and processing pipelines to probe layer and column specific 
activation across the entire brain. For our time series focused studies, we have developed novel methods for 
decoding and mapping brain activity and for characterizing differences and similarities between individuals using 
naturalistic paradigms combined with ISC assessment or within-subject dynamic connectivity-based measures. 
We are developing MRI data driven methods to characterize ongoing vigilance fluctuations, and we have 
developed methods for rapidly decoding brain activity using event-related paradigms. In our rapid decoding study, 
we found that use of multivariate patterns appears to naturally bypass problematic hemodynamic variability as 
large vessel responses contain less informative decoding information.   
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Significance 
 
A wealth of both neuronal and physiologic information remains untapped within the fMRI spatial-temporal signal 
patterns. Advancements in methodology for extracting and parsing this information require not only better tools 
but a deeper understanding of the basis of the signal and the noise. Our group focuses on both improving the tools 
and increasing the understanding of the fMRI signal, opening up the utility of fMRI for addressing increasingly 
nuanced and penetrating questions in neuroscience. 
 
A complete understanding of the brain will be that which integrates data and generates principles that span all 
salient temporal and spatial scales of organization. High resolution fMRI, having sub-millimeter voxel 
dimensions, promises to link our understanding of whole brain systems level with circuit level scales. It has also 
ushered in a new spatial dimension - that of cortical layers - for mapping and understanding human brain function. 
Insight into layer-specific activity promises to shed light on cortical hierarchy, connectivity, and computation. 
 
Recent years have seen progress in computational models that simulate macroscale features of brain dynamics 
using networks of interconnected regions. These models typically include a structural backbone consisting of 
anatomical tract data from diffusion tensor imaging (DTI) and functional data from electroencephalography 
(EEG) and/or fMRI. EEG has high temporal resolution; however, it mostly reflects activity in excitatory 
superficial layer neurons closest to the skull and oriented perpendicular to the scalp, giving an incomplete picture 
of cortical dynamics. Data from layer fMRI can help fill this gap. Approaches to infer cascading activation and 
thus connection directionality have been made using fMRI1,2; however, these are problematic as intrinsic 
hemodynamic latencies vary quasi-randomly up to 4 sec across voxels. Layer fMRI may provide information to 
help infer feedforward and feedback directionality directly from known laminar-specific patterns of activity. 
 
Regarding our work on time series analysis, deriving meaningful information and mitigating noise involves 
iteration between what we know with what we don’t know. We use our knowledge of brain activity, the 
hemodynamic signal, and the noise so that neuronal information may be extracted without making too many or 
too rigid assumptions that miss salient information. In most of our studies in this section, our paradigm designs 
and analyses make use of what we know from external measures, brain activity timing, the hemodynamic 
response, and the noise to obtain novel information. We use correlation dynamics over time, activation 
corresponding to those correlation dynamics, as well as inter-subject correlations with identical naturalistic 
paradigms to derive information about the subjects’ traits, states, or brain activity. We also use external measures 
of traits, task performance, or arousal to constrain and add meaning to the information that we obtain using fMRI. 
Our goal is the full separation of noise from meaningful neuronal signal. This goal is fundamentally important as 
it would increase the utility of fMRI towards better informing models of brain organization, “reading out” of 
ongoing cognition, and catalyzing the creation and dissemination of neuromarkers of either normal or pathological 
states, traits, and conditions. These improvements, coupled with more efficient and practical clinical pipelines, 
are also fundamental for fMRI to be more fully embraced as a clinical tool.  

Innovation and Appropriateness to the Intramural Environment 
 
In the past four years, our group has innovated in two general directions. The first is the development of novel 
high functional resolution pulse sequence and processing approaches for identifying hemodynamic changes most 
localized to neuronal activity, allowing for high resolution fMRI maps of layer activity and connectivity. The 
second is the design of paradigms and time series processing approaches to capture ongoing thought processes 
and activation during rest and naturalistic stimuli, and to allow delineation of differences in subject traits based 
on neuroimaging data. A working principle that we have used is that information is optimally derived when time 
series models are neither too constrained nor too open-ended. We aim to iterate at the limits of what we know 
about the behavior of the subjects and their corresponding neuronal activity and hemodynamics, striving to assist 
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our interpretation through what we know about pulse sequence sensitivities, paradigms, known activation 
patterns, and behavioral measures.  
 
We developed novel pulse sequences that lend themselves to rapid high-resolution functional imaging at high 
field. We developed novel paradigms and processing approaches for deriving cortical feedforward and feedback 
information as well as hierarchal cortical organization using layer specific activation and resting state 
connectivity. From these methods, we discovered a unique digit organizational structure based on two different 
finger movement patterns. We demonstrated the ability to derive measures of ongoing cognition from resting state 
data. We used dynamic connectivity as well as a novel inter-subject connectivity approach to derive trait and 
performance information. We have also demonstrated that not only is task decoding possible using event-related 
fMRI but that the use of decoding measures rather than the hemodynamic response itself naturally bypasses the 
limits of more delayed draining vein effects thus increasing the temporal accuracy of fMRI.  
 
The research performed in the past four years in SFIM is appropriate to the intramural environment because it 
requires the high field systems, the considerable physical resources, and the extensive data analysis expertise that 
extends beyond our immediate group. Collaboration with fellow IRP PIs, Cores and Teams has been critical to 
the success of these projects. Collaboration with other groups that focus on patient populations and specific 
neuroscience questions has been essential for the testing and refinement of our methods. 
 
Lastly, and importantly, the stable funding structure of the NIMH Intramural Program allows our group to focus 
on the long-term goals of method development without the requirement of obtaining funds to address a specific 
biological hypothesis, with method development as a secondary goal. Rather, our work naturally iterates between 
long term method development and collaboration with investigators who may most benefit from the methodology 
we produce. This stable environment fosters long term method advancement which, in the extramural 
environment, may be stifled as extramural funding is relatively short term and focused on questions that are 
separate from the methods themselves. Again, we feel that method advancements have fundamentally driven the 
utility of fMRI over the past thirty years and the stable intramural environment for fostering method advancement 
is not only ideally suited for our goals, but deeply and uniquely beneficial to the success of fMRI as a field.  

Background and Progress 
High Spatial Resolution fMRI 
 
Layer fMRI began with studies of primary motor and visual systems and is currently beginning to be used to 
explore the interplay of feedforward and feedback activity across the entire brain3. Layer fMRI is challenging, as 
mitigation of subject motion and large vessel artifacts is critical for interpretable data. Over the past four years, 
SFIM has been developing high resolution and small vessel-specific fMRI pulse sequences4,5, layer segmentation 
and processing pipelines6, and unique analytic approaches to more cleanly map and interpret the detailed 
functional information available7.  
 
Here, we report on our high-resolution fMRI work in two parts: completed work and ongoing work. For our 
completed work, we first compare the functional sensitivities and vascular specificities of different pulse sequence 
contrasts. In most of the studies mentioned, we use simultaneously collected BOLD and VASO contrast which 
allows both BOLD vs VASO comparisons as well as complete removal of all BOLD effects from the cerebral 
blood volume estimates through pairwise image division. In our next study, we demonstrate modulation of layer 
activity in M1 with different motor tasks and tactile stimuli. In a second motor cortex study, we reveal a novel 
digit representation in M1 that shows sensitivity to the type of movement performed. We then demonstrate that 
activity in upper and lower layers of the somatosensory cortex (S1) are sensitive to sensory prediction while the 
middle layer of S1 is activated by sensory input. We go on to show that, during working memory and manipulation 
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tasks, upper layers of the Dorsal Lateral Prefrontal Cortex (DLPFC) are selectively activated, while lower layer 
activity is only associated with the subsequent motor response. Lastly, we conclude this section with our work 
exploring resting state connectivity across layers, revealing the hierarchal structure of the visual system by 
characterizing the layer connectivity profile across the entire cortical ribbon with a seed region that is 
systematically shifted along the cortical ribbon. Furthermore, we apply cortical column resting state “hub 
mapping” to characterize layer resting state power profiles across the brain, revealing a striking differentiation 
between frontal and parietal regions. 
 
In ongoing work, we demonstrate a unique calibration approach that maps the ratio of simultaneous VASO and 
BOLD contrast to reveal voxels containing large vessels. Secondly, we report on our ongoing work using our 
novel integrated VASO and PERfusion (VAPER) pulse sequence to probe layer activity associated with visual-
auditory functional activation in the planum temporale. Lastly, we report on a novel whole brain VASO sequence 
and demonstrate preliminary approaches for exploring this explosion of data as we add a layer dimension to a 
whole brain connectome data set.   

Completed work 

Sensitivity vs. Specificity 
A major challenge for inferring layer-dependent activity has been to 
use the fMRI contrast that has the best combination of specificity to 
microvascular responses that are proximal to neuronal activity and 
enough sensitivity to detect activity changes within a practical limit 
of an hour of averaging. Here we compare pulse sequences using 
contrast mechanisms sensitive to different aspects of the 
hemodynamic response, including VASO 8, SE-BOLD (Spin-echo 
BOLD – a combination of T2 and T2* weighting), T2/T1ρ-prep-
BOLD (“pure” T2 weighting), and diffusion weighted T2-prep-
BOLD (“pure” T2 with intravascular BOLD removed)7. Experiments 
were performed on a 7T Siemens scanner with a 32-channel Nova 
head-coil. Four volunteers participated in 18 experiments.  All 
experiments were conducted with 0.7 mm x 0.7 mm in-plane 
resolution with 1.5 mm thick slices that were aligned to be 
perpendicular to the cortical surface of M1. All scans used GRAPPA 
2 acceleration.  
 
Figure 1 shows motor cortex activation images superimposed on the 
corresponding structural images for each sequence. It also compares 
the contrasts in terms of sensitivity and specificity9. VASO is among 
the most specific contrast, yet it also has sufficient sensitivity for 
layer-fMRI. We attribute this to blood volume sensitivity that 
includes small feeding arteries that are localized to the region of 
activation. While VASO clearly is advantageous in terms of contrast, 
its most common manifestation has limited coverage and low time 
efficiency because of the need for an inversion pulse to null the blood 
signal. Versions of VASO have recently been developed that do not 
rely on the long blood nulling waiting time, and therefore can be used 
in whole brain functional imaging. {Within SFIM: Laurentius Huber, Yuhui 
Chai, Emily Finn. Outside of SFIM: Sean Marrett, Jun Hua, David Feinberg, 
Harald Moeller, Kamil Uludag, Valentin Kemper} 

A    

B    
Figure 1: Comparison of functional contrasts: 
A) Maps of motor cortex activation and B) 
Corresponding plot of sensitivity (as determined 
by statistical significance of the signal changes) 
vs. specificity (as determined by the sharpness 
of the M1 layer activation profile) shows that 
VASO is a promising compromise.  
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Selective Layer Activation in Motor Cortex 
Our study demonstrating layer modulation in primary motor cortex (M1) was published since our last BSC report9. 
We used simultaneously acquired 0.75 mm x 0.75 mm x 1.5 mm voxel dimension VASO and BOLD contrast 
time series covering a slab containing M1 in 11 participants. Across separate time series, subjects performed a 
contralateral tapping task, contralateral movement without tapping, contralateral sensory stimulation, and an 
ipsilateral finger tapping task. These tasks were designed to modulate the level of activity of upper (cortical input 

from sensory cortex), and lower (output to 
spinal cord) layers.  Our results, shown in Figure 
2, demonstrate the predicted modulation in 
upper and lower cortical layers with the 
different tasks.  It can be seen in the layer 
profiles shown that VASO-based blood volume 
changes more clearly differentiate layer 
modulation than BOLD contrast does. Finger 
movement with tapping activates both upper 
and lower layers. Movement without touching 
the fingers dampens both input and output. 
External touching of fingers activates only the 
upper (input) layers. Ipsilateral finger 
movement with touching appears to inhibit 
upper layer activity while contributing to no 
change in lower (output) layers. {Within SFIM: 
Laurentius Huber, David Jangraw, Daniel Handwerker, 
Harry Hall. Outside of SFIM: Sean Marrett, Gang Chen} 

Functional Mapping of Sensorimotor Digit 
Organization 
Our high-resolution studies in motor cortex 
have not been limited to layer-specific mapping. 
The increased specificity of blood volume-
based VASO contrast allows finer 

differentiation of individual digit representations in sensory and motor cortex10. In this study, five participants 
underwent 84 hours of scanning at 7T using VASO contrast at 0.8 mm x 0.8 mm x 1 mm voxel dimension. 
Subjects performed two classes of tasks. First, they performed an individual digit tapping task, and, in a follow-
up, alternated between a full hand grasping task and a retraction task – both against resistance. Figure 3 shows 
the imaging plane localization and the results. We found, in all participants’ M1, two separate digit representations 
arranged in a mirror image manner to each other. We found only a single digit pattern in S1. For the grasping vs 
retraction tasks, we found preferential activation for grasping in only one of the digit patterns in M1 and in the 
entire S1 region previously mapped out in the digit task. For the retraction task, we found preferential activation 
in the immediately adjacent mirror imaged pattern in M1 yet minimal activation in S1. This organizational 
structure was present in all five participants. Figure 4 shows the results from all five participants, demonstrating 
reproducibility. We believe these findings are novel in that they suggest that the digit representation is dependent 
on the type of action performed. This finding is supported by recent reports of unique patterns of activation 
corresponding to complex hand postural position11. {Within SFIM: Laurentius Huber, Emily Finn. Daniel Handwerker. 
Outside of SFIM: Sean Marrett, Daniel Glenn}  

 
Figure 2: Averaged layer-dependent fMRI responses in M1 of all 
participants in response to four different sensorimotor tasks. A) The four 
tasks evoked fMRI signals that varied with cortical depth in the thumb-
index finger pinch motor area, indicated by the black box. B) The average 
cortical profiles across all participants from the boxed ROI in the maps 
show different laminar patterns in superficial and deep cortical laminae 
for the different tasks. Shaded areas around the plots are the standard error 
across participants. BOLD contrast shows the expected weighting 
towards superficial layers due to draining pial vessels. 
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Figure 3: Acquisition and analysis 
methods for measuring the laminar and 
columnar functional topography. A-B) 
The imaging slab is aligned to cover 
the entire primary sensorimotor cortex. 
C) The functional CBV signal changes 
obtained using a five-finger left hand 
tapping task reveal individual digit 
representations in M1 and S1. While 
S1 has a homunculus like linear 
representation of individual digits, the 
primary motor cortex shows clear 
deviations of the homunculus model. 
D) While S1 has a stronger activity for 
grasping compared to retraction motor 
actions, the primary motor cortex 
shows individual patches of areas that 
are either specific to grasping or 
retraction actions. 

 

       
 
Figure 4: Multiple hand representations across participants. A) The finger dominance maps show that S1 has a single representation 
of each finger in all participants, while M1 has multiple finger representations for each finger. The representations of the digits in M1 
are mirrored and about half the size of the representations in S1. B) The spatial pattern of multiple finger representations in M1 is 
compared to the representations of grasping and retraction of a ball, shown, respectively, as the copper and turquoise outlines Each 
set of fingers is clearly outlined by the borders of the regions showing grasping or retracting preference.  

 

Digit-Specific Layer Modulation with Tactile Prediction 
When humans perceive a sensation, input from sensory receptors is received in layer 4 of S1 and processed based 
on expectations that presumably project to upper and lower layers of S112. The precise mechanisms of this 
predictive coding in the human somatosensory system are not fully understood. In this study, we aimed to map 
the cortical layers involved with predictive processing of somato-sensation by examining the layer-specific 
activity in sensory input and predictive feedback in S1, and specifically in area 3b. We acquired submillimeter 
fMRI data at 7T in ten subjects during either predictable or unpredictable finger stroking sequence. We 
demonstrate that the sensory input from thalamus preferentially activates the middle layer in area 3b while the 
superficial and deep layers are more engaged for cortico-cortical predictive feedback input. 
 
Figure 5 shows the experiment and results. In figure 5A, the functional locations of digit stimulation (D1-4) are 
shown along the postcentral gyrus. A model for the thalamus input and cortical input are shown at the bottom. 
Figure 5B illustrates the input to layer IV from the thalamus to each digit region in area 3b. Layer activation 
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profiles from D1 through D4 are shown, highlighting activation in layer IV and only present during the stroking 
of the corresponding digit (D1 and D3 shown here). Figure 5C shows activation maps (and zoomed maps of D1 
activation) clearly depicting activation across all layers in area D1 corresponding to stroking all four fingers in a 
predictable order. When stroking all four fingers in a random order, only activation in middle layers appears. 
Upper and lower layers, corresponding to predictive cortical input, are not activated as the random sequence does 
not allow the formation of a clear prediction model. When stroking fingers yet leaving out D1, predicted activity 
is only shown as activity in superficial layers yet no activity is seen in layer IV of D1. Lastly, when the stroking 
sequences is random and leaves out D1, there is no activation seen in D1 at all.  
 
This study demonstrates functional differentiation of layer activity in approximate agreement with the current 
understanding of layer processing. As layer IV receives sensory input via the thalamus, it is active during stroking. 
The upper and lower layers are presumably activated by expectation of finger stroking and diminishes when the 
sequence of stroking is random. {Within SFIM: Yinghua Yu, Jiajia Yang, Laurentius Huber, David Jangraw, Daniel Handwerker, 
Peter Molfese. Outside of SFIM: Gang Chen} 
 

 
Figure 5: Modulation of sensory input and expectation. A) Functional location of digits (4 through 1) and inputs to layers in each 
digit. B) Sensory input to layer 4, and corresponding layer profiles with each profile corresponding to a different digit being stroked. 
In D1 ROI, stroking causes selective activation of layer 4, and likewise for the D3 region. C) The four conditions and the 
corresponding maps of activation in the region corresponding to D1 activation. Predictable order including D1 stroking activated all 
layers. Non-predictable order diminished activation in upper and lower layers, yet preserved the middle layer activation. Predictable 
stroking, leaving out D1, caused diminished activation in layer IV, yet activated superficial layers. Lastly unpredictable stroking, 
leaving out D1, did not activate the functional region corresponding to D1 at all. 

 

Layer-Specific Activation in Dorsal Lateral Prefrontal Cortex  
We have developed and extended high-resolution fMRI methods for use in high-order cognitive brain regions and 
used these methods to show cortical-depth-dependent patterns of activity in DLPFC during different periods of a 
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working memory task13. This work is the first to detect layer-specific signatures of activity in the association 
cortex. We achieved this result thanks to several innovations, including: 1) extending a cerebral-blood-volume-
based contrast mechanism, VASO, for use in areas of the association cortex where folding patterns are less 
predictable and anatomy is less consistent across participants;  2) using an online functional localizer to optimize 
imaging volume placement in each participant; 3) using a task design that allowed for separation of signal between 
different periods within a trial (e.g., encoding, delay, response) even in the face of a relatively low temporal 
resolution, which was necessary to achieve the desired high spatial resolution to separate cortical layers. Applying 
these methods to data acquired at 7T from 15 participants scanned during a working memory task, we detected 
layer-specific activity time series in the DLPFC that follow the hypothesized patterns: namely, superficial layers 
were preferentially active during the delay period, specifically in trials requiring manipulation (rather than mere 
maintenance) of information held in working memory, and deeper layers were preferentially active during the 
motor response. Figure 6 shows that effects were visible in individual subjects. While VASO contrast shows more 
clear delineation of activity, BOLD contrast was also able to differentiate upper and lower layer activity with the 
maintenance and motor task respectively. This study opens the door to mapping information flow during cognitive 
process in awake, behaving humans. {Within SFIM: Emily Finn, Laurentius Huber, David Jangraw, Peter Molfese} 
 

 
Figure 6: Selective activation in the upper layers in DLPFC during a memory or manipulation task and in lower layers during the 
response at the end of the maintain or manipulate time period. Note that no activation is seen if no motor action is performed. 
Activation maps show upper layer activation in green and lower layer activation in red for both BOLD and VASO contrast, however 
VASO delineates the activation more precisely.  

Resting State Assessment of Visual Hierarchy 
In a canonical cortical microcircuit, feedforward activity is in middle cortical layers, while feedback activity is in 
superficial and deeper layers14. To the degree that this canonical relationship applies, it may be possible to classify 
whether a given cortical area is best described as predominantly feedforward or feedback driven based on the 
connectivity or resting state activity profile across layers of this area7. Here we developed an approach to classify 
columnar sets across the cortex based on comparing the profile of resting state connectivity across the cortical 
layer to two templates representing feedback vs. feedforward driven activity as shown respectively by the blue 
and red curves in Figure 7A. The time courses of manually selected seed regions were used as regressors. 
Correlation values with the regressor were calculated along the cortical profile, across layers, for every columnar 
structure. The term “columnar structure” is not strictly a cortical column here, but rather a small segment of cortex 
extending through all layers. For this analysis, we segment the entire cortical ribbon into these “columnar 
structures.” The calculated correlation value layer profiles for each columnar structure were compared with the 
feedforward vs feedback templates to classify columns as having feed-forward or feedback dominance relative to 
the seed region. This procedure was repeated for 8 manually selected seed regions along the visual processing 
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stream. The resulting feed-forward (blue) vs. feedback (red) driven maps of this seed-based classification 
algorithm were used to determine which areas receive feedforward input from the seed and which areas receive 
feedback input from the seed. As is shown in Figure 7, when the seed region is in the thalamus, the correlation 
profile along the entire cortical ribbon is classified as receiving feedforward input (blue curve and blue map). As 
the seed region is moved along the cortical ribbon, visual areas lower in the cortical hierarchy than the seed region 
change their connectivity profiles to reflect feedback dominated activity (red curve and red map).  
 

 

Figure 7: Hierarchy mapping procedure by 
means of a seed-based layer-dependent analysis. 
A) First, characteristic layer-dependent profiles 
are determined. At 0.8 mm resolution, feedback 
activity in superficial layers (II/III) and deeper 
layers (IV/VI) can be separated as two separate 
peaks (red). Feed-forward activity in the deep 
layer IV can be seen as a single peak in the 
middle/deeper cortical depth (blue). B) For a 
given seed region, the layer-profile is 
determined for all columns. Here ‘columns’ are 
considered as smooth 1mm patches of the 
cortex. Each column’s layer-profile can then be 
clustered into one of the predefined classes 
based on the highest relative correlation 
strength. Columns with layer-profiles that are 
dominated by superficial and deeper layer 
activity are considered to mostly receive 
feedback input from the seed region. Columns 
with layer-profiles that are show predominantly 
middle layer activity are considered to mostly 
receive feed-forward input. C) Example clusters 
for seed regions indicated with green arrows. 
Clusters of feed-forward and feedback 
dominance are bilaterally organized along the 
geodesic distance. 

 
We have modified the above approach in order to classify the seed-independent predominant activity (either 
feedforward or feedback) across all connections in each columnar set in the brain by comparing fluctuation 
dominance across the cortical depth profiles. For this seed-independent approach, we estimated the “hubness” of 
every layer within every columnar unit, as shown in Figure 8. We calculated the correlation of the time series of 
each individual layer in a column with all other layers in that column. When the correlation of any given layer 
time series with all other layers is high, this suggests that this layer best represents predominant fluctuation power 
in the entire columnar unit. When the correlation of any given layer is low, it suggests that this layer is not 
contributing significantly to the overall ongoing fluctuations in that columnar unit. The resulting feed-forward vs. 
feedback driven map of this ROI independent classification, using the templates in Figure 8C, can be used to 
indicate which areas have resting-state fluctuation that are pre-dominantly associated with feedforward or 
feedback activity. Using this approach, we observe a striking delineation between frontal and parietal areas of the 
brain. Frontal areas appear to show predominantly feedback activity, while parietal areas appear to show 
predominantly feedforward activity. It is premature at this point to speculate on the functional significance of this 
differentiation.  {Within SFIM: Laurentius Huber, Emily Finn, Yuhui Chai. Outside of SFIM: Rainer Goebel, Rudiger Stirnberg, 
Tony Stocker, Sean Marrett, Seong-Gi Kim, SoHyun Han, Benedikt Poser} 
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Figure 8: Mapping the columnar-specific layer “hubness” across brain areas. Calculating the hubness of every layer in a column 
allows the generation of hubness layer- profiles. A) The cortex is parceled into columnar structures. The resting-state time course of 
every columnar unit is extracted. B) The layer-specific fMRI fluctuations are used to determine a functional measure of hubness. The 
term ‘hub’ is used here to describe nodes (e.g. layers) with exceptionally higher functional connectivity compared to other nodes. 
These nodes are thought to play a major role in the coordination of information flow within brain networks. Here, hubness is defined 
as the correlation between the layer-specific time course and the mean time course of all remaining layers within each column. C) 
This is an example of clustering the brain into feed-forward driven areas with largest hubness measures in the granular layer versus 
feedback driven areas with largest hubness measures in infra-granular and supra-granular layers. A sharp division between frontal 
(feedforward) and parietal (feedback) areas at the central sulcus can be seen. 

Ongoing Work 

Vascular calibration  
From Figure 1, it’s clear that gradient-echo (GE) BOLD contrast shows the highest sensitivity yet the lowest layer 
specificity. If GE-BOLD were to be calibrated to improve specificity, it would be preferred because, in addition 
to having the highest sensitivity, it allows acquisition of whole-brain data with a relatively short TR. Here, we 
show a promising calibration approach that may prove useful not only for standard resolution BOLD studies – 
allowing more quantitative and precise use of the BOLD signal, but also for layer fMRI. In a previous study, we 
demonstrated the validity of a method called VasA15 that is based on the observation that global slow respiration-
induced BOLD changes can be used as an indicator for cerebral vascular reactivity and baseline venous CBV, 
allowing voxel-wise calibration. In a follow-up study, shown in Figure 9, we characterized the voxel-wise 
relationship between simultaneously obtained VASO and BOLD contrast time series. Here, we measured the ratio 
between the BOLD and VASO signal changes and found a distinct pattern that the higher the ratio between BOLD 
and VASO changes, the more clearly these signals were in draining veins in the sulci, and likewise, as the ratio 
decreased, approaching 1, the changes were predominantly in gray matter. To investigate this further, we 
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performed independent component analysis on the BOLD time series from simultaneously acquired BOLD and 
VASO data sets that were collected during motor cortex activation. ICA components that clearly mapped to veins 
showed a high ratio, while those that showed layer specific responses, confined to grey matter, showed a ratio 
approaching 1. This analysis approach has promise in leveraging both the higher sensitivity of BOLD and the 
higher specificity of VASO to eliminate large vessel effects in low resolution BOLD studies but to allow the use 
of BOLD for assessment of layer specific activation. While ICA analysis of BOLD differentiates these regions of 
activation, it is only by assessing the ratio between BOLD and VASO, that the microvascular source of the BOLD 
signal can be confirmed. We plan to follow up on this in future studies to determine the efficacy of using this 
calibration factor in layer BOLD fMRI to eliminate across-layer vascular effects. {Within SFIM: Laurentius Huber. 
Outside of SFIM: Samira Kazan, Guillaume Flandin, Dimo Ivanov, and Nikolaus Weiskopf} 
 

 
Figure 9: A) Simultaneously obtained activation maps in motor cortex corresponding to a finger tapping task. B) BOLD ICA 
components derived from the activation time series. At bottom are the BOLD and VASO time series for the venous ICA component 
and the layer-specific ICA component, showing the difference in ratios. C) A map of BOLD to VASO ratios, mapping the high ratios 
and showing that they correspond clearly to regions of sulci where the larger vessels reside.  

 

Using VAPER to Probe Visual – Auditory Activation in Planum Temporale 
Perfusion contrasts using arterial spin-labeling have comparable specificity to VASO, however their sensitivity 
is lower, preventing their use for layer fMRI. We developed a pulse sequence named VAPER (integrated VASO 
and PERfusion), which uses DANTE (Delay Alternating with Nutation for Tailored Excitation)16 pulses for both 
nulling blood (blood volume contrast) and tagging blood (perfusion contrast)4. During DANTE pulses, blood 
signal in the microvasculature is nearly nulled to achieve a VASO contrast. After DANTE, fresh blood from 
outside of the coil coverage flows into the image microvasculature and replaces the nulled blood, generating a 
perfusion contrast. The signal difference between during-blood suppression and after-blood suppression 
conditions forms an integrated VASO and perfusion contrast. Both contrasts are sensitive to the microvasculature 
and add to increase sensitivity. Because no waiting period is needed for the blood to pass through the null point, 
this approach is more time efficient and therefore allows greater brain coverage per unit time. We demonstrate 
the use of this sequence below. 
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Multisensory integration can occur in areas such as the planum temporale (PT) that are commonly considered 
unisensory. Feedforward vs. feedback projections to the PT for multisensory processing are not well understood. 
The aim of the current study was to explore the laminar activity pattern in different subfields of human PT under 
unimodal and multisensory stimulation conditions. To this end, we acquired BOLD and VAPER contrast 
concurrently during a combined visual and auditory task. The stimulus consisted of a visual display of a left-right 
moving object and an accompanying stereo sound that moved with the object position in the visual field. Runs 
included combined audio-visual stimuli, and separate unimodal stimuli. Results are shown in Figure 10. The 
anterior PT was activated more by auditory input, as shown in Figure 10A, and it received feedback modulation 
in superficial layers as shown in Figure 10B. The high amplitude of pure audio input appears attenuated by the 
combined audiovisual input, as further shown in the subtraction plot in Figure 10B. This feedback projection is 
hypothesized to come through a top-down process from high order multimodal areas. The posterior PT was 
activated more by visual input, showing activation in both superficial and deep layers (not shown). This feedback 
projection is likely from the visual cortex directly. {Within SFIM: Yuhui Chai, Arman Khojandi, Daniel Handwerker. Outside 
of SFIM: Tina Liu, Sean Marrett, Linqing Li, Arjen Alink, Lars Muckli} 

                    
Figure 10: Activation along the planum temporale and across layers in the anterior planum temporale. A) Group-averaged columnar 
profiles of sensory representations using VAPER contrast along the planum temporale. Blue, red and green curves represent signal 
changes in BOLD and VAPER: visual-only (blue), auditory-only (red) and audiovisual stimuli (green). The distance between peaks 
of auditory and visual representations is 8 ± 2.8 mm along the cortical curvature.  B) The layer profile from the gray boxed area in 
A. Laminar profile for VAPER response to the stimuli of different sensory modalities. In superficial layers, the audiovisual response 
shows attenuation relative to the audio only response. 

Using Layer-fMRI for Whole Brain Functional Connectome Studies 
Almost all layer-fMRI studies to date have focused on specific cortical regions. For layer-fMRI to reach its full 
potential, brain-wide laminar maps of either activation or connectivity need to be obtained. VASO is sensitive to 
blood volume changes, which as mentioned above, provides an optimal combination of specificity and sensitivity. 
While VASO was originally proposed as a blood-nulling method, it has in the last 15 years been generalized to a 
general T1- contrast without specific blood-nulling requirements. The general VASO strategy was generalized to 
extract CBV changes at any inversion time17,18. This literature has shown that blood-nulling is not the only way 
of obtaining a CBV-weighting. In fact, as long as there is a different T1 weighting between the extravascular 
signal and intravascular signal, any volume redistribution between these pools of z magnetization will result in a 
VASO signal change. Thus, instead of using an inversion pulse, T1 weighting can also be introduced by variable 
flip angles that create a dynamic steady-state across k-space segments along the 3D-EPI trajectory. This approach 
has the advantage that the T1 weighting can be maintained in a dynamic equilibrium for as long as needed. 
Analogously to the MAGIC VASO method 19, with multiple inversion pulses, the variable flip angle approach is 
called Multiple Acquisitions with Global Excitation Cycling (MAGEC) VASO. Since MAGEC VASO does not 
rely on a given inversion time, the readout can be prolonged as much as needed (at the cost of TR). This allows 
for increased coverage with up to 72–104 slices at 0.8 mm isotropic resolution and with TR of 6.5–8s. Since the 
blood z-magnetization is not completely nulled, the MAGEC approach may contain cerebral blood flow (CBF) 
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dependent VASO signal amplification. Since CBF is believed to be dominated by capillary water exchange only, 
this will not compromise the layer-specificity. Rather, it improves the sensitivity. As long as there is a reference 
image acquired without this T1-weighting, the T1-related signal changes can be separated from T2* related signal 
changes to extract CBV signal without BOLD contamination. 
 
Using this pulse sequence, we extended the coverage to include almost the entire brain7. These data have been 
used to explore novel avenues to investigating resting-state connectivity and provided whole brain layer-
dependent connectome matrices. Figure 11 shows the explosion of data with the added dimension of cortical 
depth. Often, for connectivity studies, the brain is segmented, and the connectivity from every segment to every 
other segment is displayed in a connectivity matrix (Figure 11B). Now each matrix element can be expanded to 
a layer profile connectivity matrix, creating a wealth of information yet a challenging opportunity in terms of both 
computation and precise interpretation (Figure 11C and D). {Within SFIM: Laurentius Huber, Emily Finn, Yuhui Chai. 
Outside of SFIM: Rainer Goebel, Rudiger Stirnberg, Tony Stocker, Kamil Uludag, Seong-Gi Kim, SoHyuan Han, Benedikt Poser} 
 

                
Figure 11: Whole-brain layer-dependent connectome mapping. This figure shows a possible analysis approach and representative 
example data to exemplify what kind of information layer-fMRI can contribute to interpret the brain’s connectome. A) depicts the 
raw VASO EPI data quality for whole-brain layer-dependent connectomics. B) illustrates how functional connectome matrices are 
commonly generated: First, the brain is parcellated into a number of brain areas (colored masks overlaid on brain refer to the Shen 
(2013) atlas). Then, the average time courses within each brain area correlated against all other brain area’s time courses. The 
combinations of all correlation values are summarized in a functional connectivity matrix. Any value refers to one edge of the brain 
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connectome and represents the functional connectivity strength between two brain areas. C) shows that the resolution of layer-fMRI 
can add an additional dimension in connectome analyses. Since each brain area can be subdivided into multiple layers (colored masks 
overlaid on the brain), each node in the whole-brain connectivity matrix represents a layer-to-layer connectivity matrix in itself. One 
example node is highlighted (cyan). Here, rows and columns refer to layers. Superficial layers are depicted at the top and on the left, 
while the deeper layers are depicted on the bottom and on the right. Off-diagonal elements can be used to interpret directional 
connectivity. High connectivity values on the bottom left suggest that the connectivity is dominated from connections between 
middle/deeper layers of area 2 and superficial layers in area 1. Area 1 sends input into feed-forward layers of area 2, while area 2 
send feedback input to area 1 in the superficial layers. D–G) depict representative layer-dependent connectivities of common large 
networks. D) depicts the ‘visual network’. Selected correlation diagrams between V1 and V5/hMT+ confirm data from Fig. 4D. 
Namely, V1 receives top-down feedback in superficial layers from V5, while V5 receives bottom-up input in the middle/deeper layers 
(red circles). Panel E) depicts the ‘sensory motor network’. As expected from previous layer-fMRI studies, the primary motor cortex 
receives input from the sensory areas solely in superficial layers (dark blue ellipses). Panel F) shows an example of the ‘default mode 
network’. Cyan ellipses highlight that the PCC is the only middle-layer dominated ROI. The other ROIs seem to be more feedback 
driven. This can be taken as an indication that the PCC is the major hub of the ‘default mode network’, while the other areas are being 
passively driven perhaps by PCC activity. Panel G) depicts the ‘fronto-parietal network’. Orange squares depict how the superficial 
and deeper layers have strong within-region connectivity and weak connectivity between each other. They almost look like two 
independent brain areas. This is consistent with electrophysiology data previously presented in monkeys. 

 

Understanding and Leveraging Time Series Information 
 
In this second section, we addressed the challenge of leveraging more information from the transients and 
fluctuations in time series data. Our approach was to look beyond linear models using task timing-based regressors 
and beyond stationary assumptions on resting state time series data. Rather we designed approaches that used 
resting state and naturalistic stimuli and then employed cross subject correlation, sliding window correlation, and 
deconvolution to characterize of temporal/spatial features. These provided novel information about ongoing 
spontaneous or naturalistic stimuli-driven processes as well as revealing previously undetected features related to 
individual traits relative to others. 
 
In ongoing work, we demonstrated that neural correlates of reading ability are able to be derived using written 
and verbal narratives combined with inter-subject correlation analysis. We further extended our cross-time series 
correlation approach to determine how brain states of subjects change during repeated identical movie viewing. 
We also applied cross subject time series analysis to EEG data to find clear differences in cross subject coherence 
between monozygotic and dizygotic twins. Further, we demonstrated our latest insights into the use of fMRI time 
series-based measures of vigilance. Lastly, we demonstrated the novel application of multivariate decoding in 
event-related activation, where we showed that accurate decoding occurs early in the hemodynamic response - 
prior to the event-related response peak, suggesting that this approach is less influenced by delayed venous 
responses, thus increasing the temporal precision of fMRI.  
    

Completed work 

Spontaneous thought assessment by dimensionality reduction and deconvolution 
The field of brain functional connectomics studies how distributed brain regions interact to support cognition. 
Informative functional connectivity dynamics have been observed at the scale of seconds to minutes. Using 
methods previously tested on multi-task datasets20, we were able to demonstrate that resting dynamic functional 
connectivity is influenced by short periods of spontaneous cognitive-task-like processes, and that the nature of 
the cognitive processes can be inferred from the data without knowledge of the activation timing21. This work 
demonstrates that behaviorally relevant whole-brain functional connectivity (FC) configurations are detectable 
and mappable during both task and resting-state scans. It also demonstrates the utility of dimensionality reduction 
approaches (e.g. Laplacian Embeddings) as a means to bring functional connectivity matrices into low 
dimensional spaces (e.g. 3D) that are easy to visualize and can facilitate tracking behaviorally meaningful 
connectivity dynamics. Figure 12 summarizes the methods involved. In this figure, we show our dual approach. 
First, we rely on a sliding window correlation and k-means clustering to temporally segment scans into periods 
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that show consistent connectivity. Next, we rely on BOLD deconvolution22 to generate activity maps per segment 
of interest despite lacking timing information regarding subjects’ behavior inside the scanner. The clustering 
algorithm was successful in blindly grouping scan periods corresponding to distinct tasks (rest, memory, video, 
math) in the multi-task dataset. Similarly, when deconvolved maps were averaged within each detected segment 
and spatially compared against an existing comprehensive database of activation maps provided by Neurosynth 
(neurosynth.org), we were able to accurately draw inferences about the most likely mental activity taking place 
during each scan segment. Figure 13A through I show how the strongest associations of deconvolved maps occur 
for cognitive concepts (derived from comparison to Neurosynth maps) that best describe the tasks subjects were 
performing during a given scan segment. Figure 13J shows our results in a group study where we applied the 
same algorithm to resting state data. The pie chart shows the percentage of time that each identified topic, grouped 
by cognitive domain, is marked as having a strong association with the deconvolved activity maps   
 
Ideally, if a library of connectivity profiles associated with cognitive states existed, it would allow us to bypass 
the deconvolution and Neurosynth comparison steps. We intent to start building such a database. In addition, we 
are also working on the goal of developing methods for objectively obtaining during and post-scan information 
from individual subject to more objectively characterize their ongoing cognitive state, for comparison. {Within 
SFIM: Javier Gonzalez-Castillo, Natasha Topolski, Daniel Handwerker, Outside of SFIM: Cesar Caballero-Gaudes} 

 
 
 

 
Figure 12: Schematic depiction of the analysis pipeline. (A) High level start-to-end schematic of analyses for the segmentation and 
decoding of task periods in the multi-task dataset. (B) Depiction of the main steps involved in the scan segmentation portion of the 
analyses. Following pre-processing, representative time series were obtained for all ROIs and those were inputted to a PCA step to 
reduce the dimensionality of the data. The next step was to compute sliding windowed correlation matrixes that were subsequently 
entered into a k-means analysis to assign each window to one of four segments. (C) Deconvolution was performed at the voxel-wise 
level. For each voxel, the deconvolution algorithm takes a pre-processed timeseries (black curve) as an input and produces as output 
a time series of sparse events (red stems). (D) Activation maps per segment were generated by averaging event time series (red) 
within the confines of each segment as determined by the k-means step (blocks with same filling patterns). After completing this 
operation on each voxel, a full brain activity map was obtained per scan segment (bottom of panel D).  
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Figure 13:  Individual subject task decoding results for multi-task (A-I) and resting state data (J) when comparing against the 
Neurosynth 400-topics set. A) Scan segmentation results. Each dot represents a snapshot of windowed connectivity. The position of 
the dot in the y-axis indicates to which FC-state the snapshot of windowed connectivity was assigned. Tasks periods are depicted as 
colored bands for reference (REST: grey; MEMO: blue; MATH: green; VIDEO: yellow). B–E) Activity maps for each FC-state 
obtained with Sparse Free Paradigm Mapping deconvolution algorithm. F–I) Decoding results in the form of cloud plots and top-five 
lists. Cloud plots depict the probability distribution of decoding strength values across all 400 topics for each FC state in the form of 
kernel density estimates (colored curves), swarm plots (colored dots; one per topic) and boxplots (black). In these plots the location 
of “correct” topics per task are clearly marked by boxed text with arrows. Finally, the tables on the right of the figure lists the top 5 
topics with the highest decoding strength for each FC state. Topic names are constructed using the top three terms associated with 
the topic. J) Depiction of the distribution of outlier topics for spoke-like structures in the pure rest scenario grouped by cognitive 
domains previously reported to describe the most common cognitive processes that subjects engage with during rest. 

Deriving Individual Information from Naturalistic Stimuli 
Traditional task-based fMRI experiments use tightly controlled paradigms that often lack ecological validity; 
resting-state scans, on the other hand, are entirely unconstrained, making it difficult to separate signal from noise. 
Naturalistic tasks, in which subjects view a movie or listen to a story in the scanner, may provide a happy medium 
for studying both group-level functional brain organization as well as individual differences. By imposing a 
standardized yet engaging stimulus on all subjects, naturalistic tasks evoke rich patterns of brain activity. These 
patterns lend themselves to flexible, data-driven analyses such as ISC23, which is a model-free way to isolate 
stimulus-dependent brain activity from spontaneous activity and noise. Because these approaches rely on activity 
that is time-locked across individuals, they cannot be applied to resting-state data. These techniques have several 
advantages over traditional approaches: 1) they do not require a priori modeling of specific task events and/or 
assumptions about the functional specificity of individual brain regions; 2) there is no need to assume a fixed 
hemodynamic response function; and 3) they allow for the characterization of the full spatiotemporal richness of 
both evoked and intrinsic brain activity. 
 
We use a novel technique called inter-subject representational similarity analysis (IS-RSA), which adapts ISC to 
highlight stimulus-driven responses that are idiosyncratic rather than shared to extract individual information 
from naturalistic fMRI data24. We have shown that it can recover brain-behavior relationships while people watch 
complex, engaging videos. Using a publicly available dataset with n = 184 subjects watching movie clips during 
high-resolution fMRI, we have shown that IS-RSA is sensitive to both cognitive and social/affective traits, as 
well as differences in the similarity structure between brain and behavioral data for different traits. For example, 
individuals who score high on a test of working memory (an indicator of trait cognitive ability) show more similar 
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brain responses while watching movies, while low scorers are more variable, in that their brain responses look 
less similar to one another, as well as to those of high scorers, as shown in Figure 14A. On the other hand, people 
with more similar personalities (as determined by the questionnaires), regardless of absolute levels of individual 
traits, show more similar brain responses across several parts of cortex, as shown in Figure 14B, especially while 
watching video clips containing social information. We are continuing to develop and refine this method to 
understand which features of the videos trigger trait-dependent responses, with the ultimate goal of developing a 
brain-based “stress test” that is more sensitive to individual differences in behavior than either resting state or 
traditional psychological tasks. 

                      

 

Figure 14: Do pairs of subjects that score more 
similarly on behavioral traits also show stronger ISC in 
certain brain regions during naturalistic viewing? Two 
traits are tested: working memory ability (A) and 
personality (B). In the scatter plots, each dot represents one 
node in a whole-brain atlas (268 total), plotted according 
to its representational similarity between brain and 
behavior in cohort 1 (n = 93 unrelated subjects; x-axis) 
versus its representational similarity in cohort 2 (n = 89 
unrelated subjects; y-axis). Large gray dots are nodes that 
show significant representational similarity (p < 0.05, 
uncorrected) after permutation testing in both cohorts (no. 
permutations = 10,000 for each cohort); large black dots 
are nodes that show significant representational similarity 
(p < 0.05) after Bonferroni-style correction. Glass brains 
show nodes colored by IS-RSA value. Nodes outlined in 
gray and black show significant representational similarity. 
The two-cohort approach was used to avoid calculating 
brain or behavioral similarity between related pairs of 
subjects, and also to test for replicability and 
generalizability of results. 

 
In a direct comparison of acquisition type (naturalistic versus rest) using functional connectivity-based methods, 
we have shown that movie data is superior to resting-state data for the prediction of individual traits. Functional 
connectivity data from specific movie clips as short as 1-2 minutes are sufficient to predict both cognitive ability 
(up to r = 0.38 for most successful clip) and emotional traits (up to r = 0.24), in some cases with equal or higher 
accuracy than using a full 15-min resting state run, suggesting that these clips contain certain content or other 
features that amplify meaningful individual differences in connectivity25. Using automated semantic labels, we 
related semantic content of each clip to its predictive accuracy and found that clips containing more human content 
yielded more accurate predictions of cognitive ability. Relatedly, clips that had a higher percentage of timepoints 
with faces onscreen tended to perform better for predicting cognitive ability (r = 0.69, p = 0.009), again suggesting 
that social content is particularly effective for eliciting meaningful individual differences in connectivity. These 
results suggest that naturalistic movie-watching data is more sensitive to individual differences than rest, and that 
short naturalistic acquisitions can be used to build models that generalize to predict behavior in unseen subjects. 
{Within SFIM: Emily Finn, Peter Molfese, Daniel Handwerker, Arman Khojandi. Outside of SFIM: Enrico Glerean, Dylan Nielson} 

Trait Paranoia Shapes Inter-Subject Synchrony 
Individuals often interpret the same event in different ways. How do personality traits modulate brain activity 
evoked by a complex stimulus? Here we report results from a naturalistic paradigm designed to draw out both 
neural and behavioral variation along a specific dimension of interest, namely paranoia26. Participants listen to a 
narrative during functional MRI describing an ambiguous social scenario, written such that some individuals 
would find it highly suspicious, while others less so. Using ISC analysis, we first identified multiple cortical areas 
that were activated by narrative listening. We then identified several brain areas that are differentially 
synchronized during listening between participants with high and low trait-level paranoia, including theory-of-
mind regions.  Follow-up analyses indicate that these regions are more active to mentalizing events in high-
paranoia individuals. Analyzing participants’ speech as they freely recall the narrative reveals semantic and syn- 
tactic features that also scale with paranoia. Results indicate that a personality trait can act as an intrinsic “prime,” 
yielding different neural and behavioral responses to the same stimulus across individuals. {Within SFIM: Emily Finn. 
Outside of SFIM: Philip Corlett, Gang Chen, R. Todd Constable} 
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Ongoing Work 

Inter-Subject Correlation During Narratives Reveals Reading Ability 
The neuroscience of reading has recently been extended to the study of individual differences, with certain regions 
appearing differently activated in dyslexic or struggling readers. Recent work using ISC analysis suggests that a 
longer narrative has a reliable effect on the fMRI response to movie and story stimuli, especially in frontal regions 
not activated by typically used randomized words and phrases27. In this study, we presented coherent stories to 
adolescents having a wide range of reading abilities. The stories were presented in alternating visual and auditory 
blocks. We used a two-group ISC analysis to identify regions in which good and poor readers had different levels 
of consistency with other readers during these narratives. This analysis identified a widespread set of brain 
regions, shown in Figure 16, in which good readers had activity time courses that were more similar to each other 
than poor readers. These group differences were not visible with standard block analyses. Poor readers had more 
“idiosyncratic” and generally lower correlations with both good and other poor readers, suggesting a range of 
compensatory mechanisms. These 
differences were not explained by 
IQ, age, or motion. These results 
suggest an expansion of the current 
view of where and how the brain is 
affected by reading ability, and 
establishe ISC as a sensitive tool for 
future studies of reading disorders. 
{Within SFIM: David Jangraw, Emily 
Finn, Peter Molfese. Outside of SFIM: 
Nicole Landi, Fumiko Hoeft, Stephen 
Frost, Kenneth Pugh} 

                 
Figure 15: A) Narrative listening evokes widespread inter-subject correlation (ISC) across the whole sample. Voxels showing 
significant ISC across the time course of narrative listening in all participants (n = 22). As expected, the highest ISC values were 
observed in the auditory cortex, but several regions of association cortex in the temporal, parietal, frontal, and cingulate lobes as 
well as the cerebellum also showed high synchrony. Results are displayed at a voxel-wise false-discovery rate (FDR) threshold of 
q < 0.001. B) Inter-subject correlation (ISC) scales continuously with trait paranoia. Post-hoc analyses for two regions of interest 
(ROIs) that emerged from the dichotomized contrast between high- and low-paranoia groups: left temporal pole (top) and right 
medial prefrontal cortex (PFC, bottom). Participants are ordered by increasing trait paranoia score. Each matrix element reflects 
the correlation between two participants’ activation time courses in the left temporal pole during narrative listening. Higher 
correlations are visible as one moves to the right and down along the diagonal, representing pairs of increasingly high-paranoia 
individuals. Also shown are scatter plots of paranoia rank vs. median ISC value. 

      

Figure 16: Task-related 
activation (A) and ISC (B) for the 
Auditory (left) and Visual (right) 
narrative task. Much of the brain 
shows task-related activation 
changes in response to both 
modalities. C) Differences 
between good and poor readers. 
ISC Analysis results show a 
number of larger areas where ISC 
across the entire run was greater 
among good reader pairs than 
among poor reader pairs. Block 
analyses (not shown) showed no 
significant group differences. 
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Decoding Cognitive States During Repeated Movie Viewing  
In our previously mentioned study, we used sliding window dynamic connectivity to identify and decode mental 
states (see “Spontaneous thought assessment by dimensionality reduction and deconvolution”). Here, we used the 
same method to explore the consistency of mental states across repeated (16 trials) viewing of the identical movie. 
In our analysis, we performed sliding window correlation on time series from a parcellated brain. We then applied 
dimensionality reduction to characterize the 3D trajectory of connectivity profile of each time series. We then 
calculated the Euclidian distance at each time point between each time series vector projection to determine the 
similarity between repeated runs and time points. Figure 
17 shows the median Euclidian distance between all 
pairs of runs for 16 sequential views of the identical 
movie. First it is clear from the slope that as the movie 
continues, the difference between runs grows, 
suggesting a drift in consistency of cognitive state. 
Secondly, there are several consistent time periods 
during the runs where the similarity briefly increases. 
These periods are hypothesized to be points where the 
subject’s attention was engaged by emotional or 
otherwise significant moments in the movie. Inspection 
of the segments reveals that indeed these moments were 
when the main characters in the movie were initiating 
clear actions and emotions. This analysis approach lends 
itself well to characterizing salient periods in naturalistic 
stimuli as well as characterizing subject engagement 
over time. It also may help guide future paradigm design 
or analysis that leverages these moments of increased 
similarity. {Within SFIM: Ramya Varadarajan, Daniel 
Handwerker, Javier Gonzalez-Castillo} 

EEG Brain Synchrony Differences in Mono vs Dizygotic Twins 
As shown above, ISC methods have been found to be useful for relating brain synchrony to traits in individual 
subjects. In the current work, we attempt to use ISC to identify similarities and differences between monozygotic 
(MZ) and dizygotic (DZ) twins using EEG/ERP data.   
 
These data reflect 19 twin pairs (38 participants total; 
8 pairs MZ, 11 pairs DZ) who participated in this study 
over three time points: at age 6 months, 12 months, and 
18 months. At each time point, infants were presented 
with auditory stimuli that included six Consonant-
Vowel (CV) syllables: /ba/ /da/ /ga/ /bu/ /du/ /gu/.  
EEG data were recorded using 128-electrode array 
(EGI/Philips Neuro) at 250Hz, bandpass filter 0.1-
30Hz. Data were average-referenced, baseline 
corrected, and averaged to form ERPs.  All participants 
supplied at least 15 trials per average out of a possible 
25 total trials per category. An inter-subject correlation 
analysis was performed which determined the 
correlation between electrode waveforms as matched 
pairs (MZ vs. DZ) or random assignment.  Statistical 
significance was assessed using a modified linear-
mixed effects model. As shown in Figure 18, ISC 
analyses identified several significant clusters present in MZ twins which were not apparent in DZ twins, or in 

 
Figure 17: At every time point, we calculated the Euclidean 
distance between every pair of runs. This plot shows the 
median Euclidean distance between runs at each time point. 
The five local minima on the figure, circled, represent time 
periods (TPs) during which median Euclidean distances are 
relatively low, meaning that the pattern brain activation is more 
similar between runs. 

 

Figure 18: Inter-subject correlation of ERPs reveals higher 
synchrony in monozygotic (MZ) twins compared to dizygotic 
(DZ) twins or to randomly paired non-related subjects. 
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analysis pairing infants with other unrelated participants, corrected for whole-head significance. Much like in 
fMRI, ISC is a novel and potentially powerful method for identifying shared variance between participants in 
EEG. In particular, ISC allows for finer-grained identification of sensor-space similarities and differences 
compared to traditional methods (e.g. peak-amplitude), including data-driven methods like PCA. {Within SFIM: 
Peter Molfese, Emily Finn. Outside of SFIM: Dennis Molfese, Victoria Molfese} 

Data-driven Estimation of Vigilance and Wakefulness in Resting-state fMRI 
Shifts in vigilance and wakefulness constitute an important confound in the study of dynamic functional 
connectivity28. It is currently challenging to identify these shifts without external measures. Previous studies have 
demonstrated that traces of wakefulness and vigilance are present in different aspects of the fMRI data, including 
the global signal and ultra-slow fluctuations in lower CSF compartments (e.g., 4th ventricle)29. The purpose of 
this ongoing work was to evaluate ways to derive a continuous measure of vigilance from the fMRI data by 
combining these metrics. In our preliminary studies, shown in Figure 19, we have confirmed previously published 
results but also have extended some observations. First, we confirmed previous findings that the amplitude of the 
0.05 Hz fluctuations temporally correlate with periods of drowsiness, as suggested by our pupillometry measures 
– which also indicated when eyes were closed. Also, as found in previous studies, but clearly mapped here, we 
find that these fluctuations are precisely anticorrelated with BOLD signal throughout large portions of gray matter. 
Lastly, we found, using multi-echo EPI, evidence that the sources of the fluctuations in the 4th ventricle contain 
BOLD-weighted signal, and thus may represent more than just CSF inflow as suggested in previous literature29.  
It is thought that these may bear some relation to the 0.03 Hz “quasi-periodic patterns” found previously30. {Within 
SFIM: Javier Gonzalez-Castillo, Dan Handwerker, Isabel Fernandez} 
 

                    

 
Figure 19: A) Location of ROI. B) Correlation maps from 4th ventricle regressor showing anticorrelation in most of gray matter. 
C) 4th Ventricle signal shows anticorrelation with global signal. D) Traces of pupil size showing when subject had eyes closed. E)  
Corresponding spectrograms showing when 0.05 Hz power increased – correlated with eye closure. 
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Rapid Event-Related Decoding 
The limits of fMRI temporal resolution have been established to be limited by the sluggishness and variability in 
the hemodynamic response function (HRF). Specifically, the voxel-wise heterogeneity in the vasculature leads to 
a heterogeneity in HRF as larger, draining veins have a delayed response. The range in HRF latencies has been 
shown to be about 4 seconds across voxels in activated regions. Here we tested the hypothesis that the multi-voxel 
pattern of the early phase of the HRF, thought to be weighted towards smaller vessels, is sufficient to decode 
neuronal information. Specifically, we investigated the time course of decoding information by time resolved 
multi-voxel pattern analysis (MVPA) of rapidly sampled BOLD signals at 7 T with a TR of 125 ms. We scanned 
13 healthy volunteers as they viewed images of objects. Each image was presented for 500 ms followed by a rest 
period for 8.5-13.5 s. BOLD signals were acquired by T2*-weighted EPI sequence with SMS factor 3 for 9 slices 
to cover most of the occipital and occipitotemporal areas. A decoder (linear support vector machine) was trained 
with the preprocessed fMRI data. Binary classification of animal vs. vehicle category was performed using a 
leave-one-run-out cross-validation. The training and testing of the decoder were performed at each time point. 
 
As shown in Figure 20, the peak of hemodynamic responses for each voxel was distributed between 2-6 s, 
however, prediction accuracy surpassed statistical significance in less than 2 s and peaked around 4 s - 
significantly faster than the HRF responses time-to-peak. To examine if voxels with early latency are informative 
for accurate decoding, we further divided the voxels into four subgroups according to their latency and applied a 
decoder to each subgroup.  Image category prediction was possible for all subgroups at a similar time, indicating 
that voxels contain information at a similar time independent of variation of hemodynamic response latency (i.e. 
the presence of draining veins). This was more clearly visible by comparing the time course of prediction accuracy 
with that of the mean hemodynamic response of each subgroup. {Within SFIM: Yoichi Miyawaki, Daniel Handwerker, 
Javier Gonzalez-Castillo, Laurentius Huber, Arman Khojandi, Yuhui Chai} 

 
 
   

                                
Figure 20: The hemodynamic response and the multivariate decoding time course. A) The distribution of the HRF response latency 
across 400 voxels in the visual cortex, showing a spread of 4 seconds. B) The time course of the averaged hemodynamic response to 
animals and vehicles and the corresponding multivariate decoding accuracy over time. The decoding accuracy reaches about 80% within 
2 seconds, which is just as the hemodynamic response is rising from baseline. C) The timing of the decoding accuracy, shown in red, is 
independent of the which latency grouping of hemodynamic responses was used. 
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List of SFIM Publications Since Last BSC Report (44 papers, 1 book) 
 
(Red indicates use in summary) 
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2018, 9:1–14. 
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Book Chapter:  
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Varjačić, A., Mantini, D., Levenstein, J., Slavkova, E. D., Demeyere, N., & Gillebert, C. R. (2018). The role of 
left insula in executive set-switching: Lesion evidence from an acute stroke cohort. cortex, 107, 92-101.  
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Resource Sharing and Data Sharing 
 
Datasets shared: 
 
100 run study: 9 hours of scanning per subject for three subjects performing a simple motor-visual task. 
Multi-task dataset: multiple 24-minute data sets consisting of 8 x 3-minute segments of four tasks: video, 
working memory, calculation, and rest.  
 
We plan to deposit all our data into our NIH data repository that will be started through the Data Sharing Core 
Facility, headed by Adam Thomas. Until then, we will keep it in our own archives (NIH Biowulf Cluster) and 
will make available on request. De-identified data can be shared with any researcher who signs a data use 
agreement as defined in NIH IRB protocol 93M0170. Data has been shared through he central.xnat.org repository 
and using https://nihcesaev.cit.nih.gov for specific requests from non-NIH researchers. 
 
We have shared example data upon request from: 
Olivia Viessmann, James Kolasisnki, FMRIB, Oxford 
Rosa Panchuelo and Susan Francis, Nottingham 
Gopi (Kaundiniya Gopinath) from Emory University in Atlanta 
Markus Barth from Queensland 
Olivier Reynaud from Lausanne 
 
Much of our code is made available through public GitHub repositories. We recently hired a scientific 
programmer, Jushua Teves, to help us both share and centralize our publicly shared code at 
https://github.com/nimh-sfim. 
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Collaborations 
 
Alex Martin,  NIMH LBC  
Visual naming in simultaneous EEG+fMRI, and high resolution fMRI 
Eli Merriam,  NIMH LBC 
High resolution fMRI 
Chris Baker NIMH, LBC 
High resolution fMRI 
Leslie Ungerleider, NIMH, LBC 
Co-author on TMS+fMRI project with Dan Handwerker 
Bob Cox, Gang Chen, Dan Glen, NIMH, SSCC 
help with AFNI  
Sean Marrett, Vinai Roopchansingh, Andy Derbyshire, Linqing Li, NIMH, Functional MRI Core Facility 
Help with scanning infrastructure, pulse sequences, data transfer and archival pipeline, subject interface 
Francisco Pereira, NIMH, Machine Learning Team 
Collaboration on machine learning-relevant analyses 
Adam Thomas, NIMH, Data Science and Sharing Team 
Help with sharing, management and analysis of public data sets 
Benedikt Poser, University of Maastricht 
He provided pulse sequence input regarding high resolution fMRI. 
Carlos Zarate NIMH SSCC 
collaborator on Emily Finn’s K99 depression project 
Christian Grillon NIMH 
Co-author on multi-echo fMRI study of development 
Elizabeth Hillman, Columbia University 
We are on a grant together to investigate the relationship between Calcium Imaging Signals and fMRI signals. 
Emily Meyers, University of Connecticut 
Non-native speech sound learning impacted by sleep with fMRI/ISC 
Jeff Duyn, NINDS,  
Collaborating on MT contrast study for white matter delineation, and sleep studies 
Lars Muckli, University of Glasgow  
Provided visual/auditory motion paradigm for a layer activation experiment 
Manish Saggar, Stanford University 
Worked with us on our time series decoding project. We provided input for a paper that he published. 
Michael Millham, Child Mind Institute 
Provided data (from his database) for one of our naturalistic stimuli projects. 
Sara Inati, NINDS,  
Epilepsy and simultaneous EEG+fMRI 
Sayako Earl, University of Delaware 
Learning and sleep consolidation 
Sunandra Mitra, University of Texas, Lubbock 
Co-mentored a student we hosted in our lab. She co-authored several papers that he wrote while in our lab. 
Todd Constable, Yale University 
Provided some of the data regarding our naturalistic stimuli and cross subject correlation project. 
Tristan Bekinchtein, Cambridge University  
Co-mentor to graduate student Samika Kumar 
Charlotte Stagg, Oxford University 
Co-mentor to graduate student Jacob Levenstein 
Vince Calhoun, Georgia Tech 
Co-mentored a student we hosted in our lab. He was co-author on several of his papers that he wrote with us. 
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Angela Lard and Taylor Salo, Florida International University 
Collaborator on multi-echo pipeline creation project: tedana. 
Cesar Caballero-Gaudes, Basque Center of Cognition, San Sebastian, Spain 
Co-authored several papers with us on deconvolution of fMRI using multi-echo data.  
Eneko Uruñuela and Stephano Moia Basque Center of Cognition, San Sebastian, Spain 
Collaborator on multi-echo pipeline project: tedana 
Logan Dowdle, University of Minnesota, 
Collaborator on multi-echo pipeline project: tedana 
Kirstie Whitaker, Alan Turing Institute, London 
Collaborator on multi-echo pipeline project: tedana 
Julia Kam, University of Calgary, Alberta, CA 
Co-authoring a paper in preparation on imaging ongoing thought. Collaborator on real time fMRI project. 
Colin Hoy, University of California, Berkeley 
Co-authoring a paper in preparation on imaging ongoing thought. Collaborator on real time fMRI project. 
Peter Jezzard, Oxford University 
Co-author on paper describing DANTE prepared dual-echo fMRI for while brain CBV quantification.  
Tom Nichols, Oxford University 
Co-author on paper assessing noise sources across trials, runs, and sessions.  
Naryanan Srinivassan and Ishan Singhal, Indian Institute of Technology, Kanpur 
Collaborated on our study of flip angle and its effects on resting-state connectivity. 
Lilianne Mujica-Parodi, Stony Brook University School of Medicine 
We are testing a dynamic phantom that she has provided us as we are collaborators on her grant supporting this. 
Maria Acosta, National Human Genome Research Institute, NIH. 
Advising with acquisition, analysis and interpretation of resting-state fMRI data in a gene therapy protocol 
looking at clinical outcomes of a novel Intravenous Gene Transfer with an AAV9 Vector Expressing Human β-
galactosidase in Type II GM1 Gangliosidosis. 
 

Resources Requested 
2 additional post bac IRTA positions. We currently have 4 post bac IRTAs but two are here on temporary loan 
and will disappear once the loan ends. We feel that 4 post bac IRTA positions is optimal for us as we have 2 
staff scientists and 2 post docs, and will shortly have 2 more post docs. We feel that the ratio of 2 post bac 
IRTAs for every 3 post docs is optimal. 
  



 31 

Bibliography 
 
1.  Katwal SB, Gore JC, Gatenby JC, Rogers BP. Measuring relative timings of brain activities using fMRI. 

Neuroimage. 2013;66:436-448. doi:10.1016/j.neuroimage.2012.10.052 
2.  Menon* † ‡ § RS, Luknowsky DC, Gati JS. Mental Chronometry Using Latency-Resolved Functional 

MRI. Vol 95.; 1998. Accessed November 30, 2020. www.pnas.org. 
3.  Norris DG, Polimeni JR. Laminar (f)MRI: A short history and future prospects. Neuroimage. 

2019;197:643-649. doi:10.1016/j.neuroimage.2019.04.082 
4.  Chai Y, Li L, Huber L, Poser BA, Bandettini PA. Integrated VASO and perfusion contrast: A new tool 

for laminar functional MRI. Neuroimage. 2020;207:116358. doi:10.1016/j.neuroimage.2019.116358 
5.  Huber L, Ivanov D, Handwerker DA, et al. Techniques for blood volume fMRI with VASO: From low-

resolution mapping towards sub-millimeter layer-dependent applications. Neuroimage. 2018;164:131-
143. doi:10.1016/j.neuroimage.2016.11.039 

6.  Huber L (Renzo) R (Renzo), Poser BA, Bandettini PA, et al. LAYNII: A software suite for layer-fMRI. 
BioRxiv. Published online June 14, 2020:2020.06.12.148080. doi:10.1101/2020.06.12.148080 

7.  Huber L, Finn ES, Chai Y, et al. Layer-dependent functional connectivity methods. Prog Neurobiol. 
Published online June 5, 2020:101835. doi:10.1016/j.pneurobio.2020.101835 

8.  Lu H, Golay X, Pekar JJ, Van Zijl PCM. Functional magnetic resonance imaging based on changes in 
vascular space occupancy. Magn Reson Med. 2003;50(2):263-274. doi:10.1002/mrm.10519 

9.  Huber L, Handwerker DA, Jangraw DC, et al. High-Resolution CBV-fMRI Allows Mapping of Laminar 
Activity and Connectivity of Cortical Input and Output in Human M1. Neuron. 2017;96(6):1253-
1263.e7. doi:10.1016/j.neuron.2017.11.005 

10.  Huber L, Finn ES, Handwerker DA, et al. Sub-millimeter fMRI reveals multiple topographical digit 
representations that form action maps in human motor cortex. Neuroimage. 2020;208:116463. 
doi:10.1016/j.neuroimage.2019.116463 

11.  Leo A, Handjaras G, Bianchi M, et al. A synergy-based hand control is encoded in human motor cortical 
areas. Elife. 2016;5(FEBRUARY2016). doi:10.7554/eLife.13420 

12.  Yu Y, Huber L, Yang J, et al. Layer-specific activation of sensory input and predictive feedback in the 
human primary somatosensory cortex. Sci Adv. 2019;5(5):eaav9053. doi:10.1126/sciadv.aav9053 

13.  Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. Layer-dependent activity in human 
prefrontal cortex during working memory. Nat Neurosci. 2019;22(10):1687-1695. doi:10.1038/s41593-
019-0487-z 

14.  Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb 
Cortex. 1991;1(1):1-47. doi:10.1093/cercor/1.1.1 

15.  Kazan SM, Huber L, Flandin G, Ivanov D, Bandettini P, Weiskopf N. Physiological basis of vascular 
autocalibration (VasA): Comparison to hypercapnia calibration methods. Magn Reson Med. 
2017;78(3):1168-1173. doi:10.1002/mrm.26494 

16.  Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: A novel approach to motion-sensitized and 
motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med. 2012;68(5):1423-1438. 
doi:10.1002/mrm.24142 

17.  Wu WC, Buxton RB, Wong EC. Vascular space occupancy weighted imaging with control of residual 
blood signal and higher contrast-to-noise ratio. IEEE Trans Med Imaging. 2007;26(10):1319-1327. 
doi:10.1109/TMI.2007.898554 

18.  Ciris PA, Qiu M, Constable RT. Noninvasive MRI measurement of the absolute cerebral blood volume-
cerebral blood flow relationship during visual stimulation in healthy humans. Magn Reson Med. 
2014;72(3):864-875. doi:10.1002/mrm.24984 

19.  Lu H, van Zijl PCM, Hendrikse J, Golay X. Multiple acquisitions with global inversion cycling 
(MAGIC): A multislice technique for vascular-space-occupancy dependent fMRI. Magn Reson Med. 
2004;51(1):9-15. doi:10.1002/mrm.10659 

20.  Gonzalez-Castillo J, Hoy CW, Handwerker DA, et al. Tracking ongoing cognition in individuals using 



 32 

brief, whole-brain functional connectivity patterns. Proc Natl Acad Sci. 2015;112(28):8762-8767. 
doi:10.1073/pnas.1501242112 

21.  Gonzalez-Castillo J, Caballero-Gaudes C, Topolski N, Handwerker DA, Pereira F, Bandettini PA. 
Imaging the spontaneous flow of thought: Distinct periods of cognition contribute to dynamic functional 
connectivity during rest. Neuroimage. 2019;202. doi:10.1016/j.neuroimage.2019.116129 

22.  Caballero Gaudes C, Petridou N, Francis ST, Dryden IL, Gowland PA. Paradigm free mapping with 
sparse regression automatically detects single-trial functional magnetic resonance imaging blood 
oxygenation level dependent responses. Hum Brain Mapp. 2013;34(3):501-518. doi:10.1002/hbm.21452 

23.  Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R. Intersubject Synchronization of Cortical Activity 
during Natural Vision. Science (80- ). 2004;303(5664):1634-1640. doi:10.1126/science.1089506 

24.  Finn ES, Glerean E, Khojandi AY, et al. Idiosynchrony: From shared responses to individual differences 
during naturalistic neuroimaging. Neuroimage. 2020;215:116828. 
doi:10.1016/j.neuroimage.2020.116828 

25.  Finn ES, Bandettini PA. Movie-watching outperforms rest for functional connectivity-based prediction of 
behavior. bioRxiv. Published online 2020:2020.08.23.263723. doi:10.1101/2020.08.23.263723 

26.  Finn ES, Corlett PR, Chen G, Bandettini PA, Constable RT. Trait paranoia shapes inter-subject 
synchrony in brain activity during an ambiguous social narrative. Nat Commun. 2018;9(1):1-13. 
doi:10.1038/s41467-018-04387-2 

27.  Jangraw DC, Gonzalez-Castillo J, Handwerker DA, et al. A functional connectivity-based neuromarker 
of sustained attention generalizes to predict recall in a reading task. Neuroimage. 2018;166:99-109. 
doi:10.1016/j.neuroimage.2017.10.019 

28.  Chang C, Metzger CD, Glover GH, Duyn JH, Heinze H-J, Walter M. Association between heart rate 
variability and fluctuations in resting-state functional connectivity. Neuroimage. 2013;68:93-104. 
doi:10.1016/j.neuroimage.2012.11.038 

29.  Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic, and 
cerebrospinal fluid oscillations in human sleep. Science (80- ). Published online 2019. 
doi:10.1126/science.aax5440 

30.  Yousefi B, Shin J, Schumacher EH, Keilholz SD. Quasi-periodic patterns of intrinsic brain activity in 
individuals and their relationship to global signal. Neuroimage. 2018;167:297-308. 
doi:10.1016/j.neuroimage.2017.11.043 

 
 
 
 
 
 


