

Edge event organization across temporal categories

Joshua Faskowitz¹, Javier Gonzalez-Castillo¹, Peter A. Bandettini^{1,2}

¹ Section on Functional Imaging Methods, ² Functional Magnetic Resonance Imaging Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, USA

Josh is unable to attend OHBM this year, but is happy to field your questions via email! joshua.faskowitz@nih.gov

Introduction

- Functional magnetic resonance imaging (fMRI) has shown that BOLD signals will synchronize across the cortex during task-free conditions, which is used to probe functional organization (e.g. FC matrix)
 - It is often assumed that the synchrony between regions is a low-frequency phenomena
 - This assumption is implicit in time-varying FC methods, which take correlation estimates within windows spanning tens of seconds
- Prior research^{1,2,7} has established that the spatial info can be pinpointed to specific fMRI frames • Studies also show that FC patterns can be resolved from moments of high-amplitude signal^{6,7,10}
- Edge time series^{3,10} render connectivity dynamics at the temporal resolution of the input time series
 - These time series are marked by high-amplitude frames, which can be used to reconstruct FC
 - By virtue of temporal resolution, edge time series can be used to identify moments of high-amplitude connectivity, which we term edge events, lasting mere seconds
 - Each edge event has a duration, which can provide added info on connectivity unfolding over time
- Here we show how the synchrony (i.e. FC) can similarly be understood through the lens of punctate events, and that this approach can enhance our understanding of FC with additional information

Edge event duration differs across cortex & is not explainable by common artifacts or physiological factors

Questions to be asked about edge time series events Edge event construction illustrated Edge time series are the "unwrapped" product-moment correlation, the mean of which is Does this node have emanating equal to correlation edges with long By exposing the or short events? moment-by-moment fluctuations. we can extract additional features like high-amplitude events The duration of an event is not necessarily a characteristic that can be captured by the spatial correlation of the system

event thresholds, per subject

edge threshold

Methods

fMRI data

What is this edge's

correlation magnitude? Event count? What's the duration of its events?

- Human Connectome Project⁹ quality-controlled subset of 352 subjects⁴; split into train/test subsets of 176
- Resting-state data (0.72 TR, 1200 TRs, ~15 min) minimally pre-processed, motion, distortion, ICA-FIX corrected, and projected to fsLR surface; bandpass (0.008 - 0.2 Hz) filtered, mean WM, mean CSF, linear, and quadratic drift removed via linear regression in one step using AfNI's 3dTproject Max correlation (yellow) between event count & FC, across different
- Time series constructed using 200 node of Schaefer parcellation (fsLR space)

• Edge time series & edge event extraction

• Computed as the element-wise product of two z-scored signals

All detected events (all subjects) binned by

duration, forming a heavy-tailed distribution;

bins are colored by assigned duration cate-

- Edge event threshold selected in data driven manner (illustrated left): for each subject, event count matrix at various thresholds (0-4.0) constructed, then correlated to individual's FC; threshold selected as mode max across subjects = 2.25 (arbitrary units)
- Duration of edge events were labeled as short (<1.4 sec), inter- mediate (>= 1.4, < 2.8 sec), long (>= 2.8 sec) categories by: setting all events detectable less than 2 TR's as short (~21% of

all events), and matching as close as possible this percentage at the tail as long (4 TR's and above; ~27% of events); remaining events (52% of events) were labeled as intermediate (distri-

For each node, we compute the duration of its emanating edge events on average, and display this data on the inflated cortex (top). Edge events have different durations, depending on their cortical location - longer events are found in primary sensory areas (VisCent system & L&R SomMotB nodes), whereas the shortest events fall along the mid-line and ventral surface. This pattern is clarified even more when rank ordering duration data (right).

Here, we compared duration data to other cortical maps. Edge event duration is highly correlated with time series autocorrelation decay, indicating that the 'timescale' of node time series contributes to the duration of edge events. However, this map does not align with the spatial pattern of event duration, suggesting non-redundant information. Duration does not seem to be a byproduct of mean FC, nor does it seem to be highly influenced by nodal data quality (DVARS, TSNR) or the blood volume at specific cortical locations (CBV).

natrices at the subject-level

0 0.2 0.4 0.6 0.8

rank correlation

Functional organization differs when parsing events by duration

dory: cumulative distribution in inse

• Obtain FC, event counts (overall & parsed by duration), and event durations matrices for each subject; averaged across subset (n=176) for mean matrix comparisons

Results

FC correlated with event count & duration provides alternative information

Group average FC matrix provide nearly the same information, as the upper triangle of these matrices are highly correlated (Spearman rho: 0.96). This indicates that FC is driven, or overwhelmingly influenced, by the number of high-amplitude connectivity events occurring over the course of a resting-state scan. FC and event duration are also highly correlated (rho: 0.73), but the attenuated correlation and shape of the distribution suggest that event duration might provide different information about functional connections between regions of the cortex.

Illustration of the count matrices, organized by canonical system, when parsing edge events by duration category. Short and intermediate events load heavily onto mid-line and insular areas, whereas the long events form a matrix that is very similar to FC matrix at both the group level (rho=0.96) and subject level (see histogram, left). Thus, FC can be framed as a phenomenon driven primarily by long events that occur sparsely (less than 16 times on average) throughout the resting state scan.

tion were compared to data from phase randomized (preserving spacorrelation) and frequential cy-matched surrogate time series⁵ were created and edge event durations were recorded. Surrogate data overestimated the consistently number of intermediate and long Similarity between the count matrices of each duration with FC. As duration increased, matrices appear edge events. This demonstrates that re similar to FC (within-subject). This relabasic system properties (spatial cortionship is highly similar across dataset subset. relation & frequency spectra) can result in edge events, but not with the Discussion sparsity observed in empirical data.

Statistically comparing edge event counts for each duration category, edges passing false-discovery rate threshold colored in

Event count matrices at each dura-

References

- 1. Allan, T. W., Francis, S. T., Caballero-Gaudes, C., Morris, P. G., Liddle, E. B., Liddle, P. F., Brookes, M. J., & Gowland, P. A. (2015). Functional connectivity in MRI is driven by spontaneous BOLD events. PloS one, 10(4), e0124577.
- 2. Cifre, I., Zarepour, M., Horovitz, S., Cannas, S. A., & Chialvo, D. R. (2020). Further results on why a point process is effective for estimating correlation between brain regions. Papers in physics, 12, 120003-120003
- 3. Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O., & Betzel, R. F. (2020). Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nature neuroscience, 23(12), 1644-1654.
- 4. Ito, T., Hearne, L. J., & Cole, M. W. (2020). A cortical hierarchy of localized and distributed processes revealed via dissociation of task activations, connectivity changes, and intrinsic timescales. Neuroimage, 221, 117141
- 5. Laumann, T. O., Snyder, A. Z., Mitra, A., Gordon, E. M., Gratton, C., Adeyemo, B., ... & Petersen, S. E. (2017). On the stability of BOLD fMRI correlations. Cerebral cortex, 27(10), 4719-4732.
- 6. Liu, X., & Duyn, J. H. (2013). Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proceedings of the National Academy of Sciences, 110(11), 4392-4397
- 7. Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Frontiers in physiology, 3, 15.
- 8. Tagliazucchi, E., Siniatchkin, M., Laufs, H., & Chialvo, D. R. (2016). The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process. Frontiers in Neuroscience, 10, 381.
- 9. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Consortium, W.-M. H. (2013). The WU-Minn human connectome project: an overview. Neuroimage, 80, 62-79.
- 10. Zamani Esfahlani, F., Jo, Y., Faskowitz, J., Byrge, L., Kennedy, D. P., Sporns, O., & Betzel, R. F. (2020). High-amplitude cofluctuations in cortical activity drive functional connectivity. Proceedings of the National Academy of Sciences, 117(45), 28393-28401.

Reference Yeo canonical systems

- This research was made possible thanks to the support of the NIMH Intramural Research Program ZIA-MH002783. This work utilized the computational resources of the NIH HPC Biowulf cluster (hpc.nih.gov).
- Checkout github.com/nimh-sfim/edgeevents for code in MATLAB Thanks to NIMH SFIM lab for their support; especially Dan Handwerker (who transported this poster cross-continent) and Peter Bandettini for representing us at OHBM.

significantly less than surrogate

- We show that connectivity can be cast as a series of punctate events rather than slow oscillations, at level of edges. • Whereas previous time-varying FC methods demonstrate the ebb and flow of connectivity patterns, our approach shows the expression of this information in moments generally < 5 sec (but also: shorter events relate less to FC) • As FC can be thought of as counts of sparse events, begs question about timing of these events and if there are relevant patterns in-between events
- Edge event duration is not redundant with FC, and thus, is a candidate to uncover novel cortical organization • Longest edge events emanate from primary sensory regions, which are thought to be fast-acting, responsive to the environment; prolonged events could be signature of feedback from areas higher on functional hierarchy • Given the bursty nature of FC when 'unrolled' at the edge level, suggests future prospects for statistically differentiating functional relationships using techniques sensitive to these sparse features.