Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit https://cc.nih.gov.
Updates regarding government operating status and resumption of normal operations can be found at https://opm.gov.

Ante la falta de fondos del gobierno federal, no se actualizará este sitio web y la organización no responderá a transacciones ni consultas hasta que se aprueben los fondos.
 El Centro Clínico de los Institutos Nacionales de la Salud  (el hospital de investigación) permanecerá abierto. Consulte https://cc.nih.gov(en inglés)
Infórmese sobre el funcionamiento del gobierno federal y el reinicio de las actividades en https://opm.gov.

Year of Publication: 2013
Project: BOLD Connectivity Dynamics
FIM Authors:
Authors:
  • Peter Bandettini
  • P. Kundu
  • J. Gonzalez-Castillo
  • M. Misaki
  • P. Guillod
Abstract:

Functional MRI is fundamentally grounded in the hemodynamic response. With an increase in neuronal activity, blood flow increases, causing an increase in blood oxygenation, leading to an increase in transverse relaxation rate T2*. This increase in blood flow is slow and highly variable and shows a considerable spatial heterogeneity. In spite of these limitations, the hemodynamic response has been proven to be exquisitely sensitive to subtle differences in neuronal activity in time, over space, and between subjects. This paper is a brief review of my Keynote address describing some of the effort coming from my group that further demonstrates methods to robustly extract ever more information from both resting state fMRI and activation-induced fMRI. Specifically, I discuss 1) our new method to use multi-echo fMRI time series data collection to separate blood oxygen level dependent (BOLD) signal from non-BOLD signal, 2) activation of the whole brain obtained using a simple task and, importantly massive averaging and a model-free analysis approach, and 3) fMRI decoding of left vs right eye ocular dominance column activation with a timing offset as low as 100 ms.


Journal: SPIE Proceedings Medical Imaging
URL:
DOI: 10.1117/12.2012737