Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit https://cc.nih.gov.
Updates regarding government operating status and resumption of normal operations can be found at https://opm.gov.

Ante la falta de fondos del gobierno federal, no se actualizará este sitio web y la organización no responderá a transacciones ni consultas hasta que se aprueben los fondos.
 El Centro Clínico de los Institutos Nacionales de la Salud  (el hospital de investigación) permanecerá abierto. Consulte https://cc.nih.gov(en inglés)
Infórmese sobre el funcionamiento del gobierno federal y el reinicio de las actividades en https://opm.gov.

Year of Publication: 2025
Project: Layer Specific fMRI
FIM Authors:
Authors:
  • Yuhui Chai
  • Linqing Li
  • Rüdiger Stirnberg
  • Laurentius Huber
  • Tony Stöcker
  • Peter Bandettini
  • Bradley P. Sutton
Abstract:

Cerebral blood volume (CBV) and cerebral blood flow (CBF) based functional magnetic resonance imaging (fMRI) have proven to be more laminar-specific than blood-oxygen-level-dependent (BOLD) contrast fMRI, but they suffer from relatively low sensitivity. In previous work, we integrated CBV and CBF into one contrast using DANTE (Delay Alternating with Nutation for Tailored Excitation) pulse trains combined with 3D echo-planar imaging (EPI) to create an integrated blood volume and perfusion (VAPER) weighted contrast (Chai et al., 2020). Building on this, we have now introduced a magnetization transfer approach to induce a tissue-suppression-based VASO (vascular space occupancy) effect and incorporated it with the VAPER technique to boost the overall sensitivity while maintaining superior laminar specificity, all without altering the original VAPER sequence timing scheme. This MT-VAPER fMRI acquisition alternates between DANTE-blood-nulling and MT-tissue-suppression conditions, generating an integrated VASO and perfusion contrast enhanced by MT. Both theoretical and experimental evaluation demonstrated an approximately 30% enhancement in VAPER sensitivity with MT application. This novel MT-VAPER method was empirically validated in human primary motor and visual cortices, demonstrating its superior laminar specificity and robust reproducibility, establishing it as valuable non-BOLD tool for laminar fMRI in human brain function research.


Journal: Imaging Neuroscience
URL: https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00453/127396
DOI: https://doi.org/10.1162/imag_a_00453