Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit https://cc.nih.gov.
Updates regarding government operating status and resumption of normal operations can be found at https://opm.gov.

Ante la falta de fondos del gobierno federal, no se actualizará este sitio web y la organización no responderá a transacciones ni consultas hasta que se aprueben los fondos.
 El Centro Clínico de los Institutos Nacionales de la Salud  (el hospital de investigación) permanecerá abierto. Consulte https://cc.nih.gov(en inglés)
Infórmese sobre el funcionamiento del gobierno federal y el reinicio de las actividades en https://opm.gov.

Year of Publication: 2011
Project: BOLD Connectivity Dynamics
FIM Authors:
Authors:
  • D. Soltysik
  • D. Thomasson
  • S. Rajan
  • J. Gonzalez-Castillo
  • D. P
  • B. N
Abstract:

It is hypothesized that, based upon partial volume effects and spatial non-uniformities of the scanning environment, repositioning a subject's head inside the head coil between separate functional MRI scans will reduce the reproducibility of fMRI activation compared to a series of functional runs where the subject's head remains in the same position. Nine subjects underwent fMRI scanning where they performed a sequential, oppositional finger-tapping task. The first five runs were conducted with the subject's head remaining stable inside the head coil. Following this, four more runs were collected after the subject removed and replaced his/her head inside the head coil before each run. The coefficient of variation was calculated for four metrics: the distance from the anterior commisure to the center of mass of sensorimotor activation, maximum t-statistic, activation volume, and average percent signal change. These values were compared for five head-stabilization runs and five head-repositioning runs. Voxelwise intraclass correlation coefficients were also calculated to assess the spatial distribution of sources of variance. Interestingly, head repositioning was not seen to significantly affect the reproducibility of fMRI activation (p<0.05). In addition, the threshold level affected the reproducibility of activation volume and percent signal change.


Journal: NeuroImage
Volume: 56
URL:
DOI: